
Promoting Developer-Specific Awareness

Reid Holmes and Robert J. Walker
Laboratory for Software Modification Research

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada
rtholmes,rwalker@cpsc.ucalgary.ca

ABSTRACT
Maintaining a developer’s awareness of changes in the software on
which she depends is challenging. Awareness is often impeded at
two ends of the spectrum: a lack of information, when the changes
only become apparent when a build breaks or bugs appear; or an
excess of information, where the changes are announced but the
majority of the changes are not relevant to the developer in her par-
ticular project and context. In the middle ground lies the possibility
of support for developer-specific awareness (DSA), wherein infor-
mation about the changes is filtered on the basis of the developer’s
own code and interests. This paper discusses how the DSA prob-
lem is manifested in software development and briefly examines
the design space involved in providing DSA notifications. A par-
ticular point in the space is proposed for a target implementation,
called the YooHoo awareness system, that will help developers in
loose organizations to keep apprised of any code changes that are
specifically relevant to the source code for which they are respon-
sible.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Object-oriented program-
ming

General Terms
Human Factors

Keywords
Developer-specific awareness, distributed teams, YooHoo

1. INTRODUCTION
Software systems are created by large, often geographically dis-

tributed, teams or more informally organized groups of developers.
Thus, it should not be surprising that communication breakdowns
have often been cited as a major cause of delays for industrial soft-
ware systems [6]. The interconnected nature of complex software
systems means that changes made by a committer to their own code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE’08, May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-039-5/08/05 ...$5.00.

can often have implications for other developers whose code de-
pends on that of the committer. For the other developers, remain-
ing aware of important changes can be challenging. Awareness is
often impeded at two ends of the spectrum: a lack of information,
when the changes only become apparent when a build breaks or
bugs appear; or an excess of information, where the changes are
announced but the majority of the changes are not relevant to the
developer in her particular project and context. The middle-ground
is unpopulated: we lack automated support for developer-specific
awareness (DSA).

In practice, developers often maintain awareness of one another
using email and instant messaging but this requires dedicated ef-
fort from the developer [8] and is disconnected from their develop-
ment activities. This disconnection of awareness from the source
code is significant as developers often use the code as their pri-
mary information source [10]. Developers often only notice ex-
ternal changes when they induce failures; keeping apprised of any
changes in source code they depend upon can allow them to pro-
actively remedy their systems before they break. However, devel-
opers can also suffer from an overabundance of information: being
notified of every update made by their own team and all of the
teams developing any external code they depend upon can quickly
become overwhelming [3].

Several systems have investigated providing different aspects of
awareness to developers. The Jazz system provides the concept of
a feed that lists many recent changes to the system and provides an
overview of what other team members are working on [2]. Palan-
tír provides an online view of how developers are modifying their
source before it is committed, enabling developers to predict future
changes [9]. FASTDash also provides a real-time awareness sys-
tem to small teams showing who is working on what code elements
at any one time [1]. Each of these approaches provides a global
view that—while useful for various purposes—does not meet the
needs of developer-specific support.

Instead, filtering such information to present only what is rel-
evant in the context of a particular developer both reduces extra-
neous information that the developer need consider and increases
the visibility and effectiveness of the remainder. To this end, sev-
eral factors must be considered: (1) how to determine what has
changed, and the nature of the change, without burdening the com-
mitter; (2) how to analyze the developer’s context to determine
what would likely matter to them; (3) how to allow the developer
to specify their preferences regarding the kind of information they
want to receive, and to allow this specification to change dynami-
cally; and (4) how to present the filtered information to the devel-
oper, to balance visibility with obtrusiveness. This paper outlines
the requirements to support DSA and an implementation to achieve
them.

The remainder of the paper is structured as follows. Section 2
outlines a scenario that motivates the utility of developer-specific
awareness tools. Section 3 describes the requirements of such
tools while Section 4 proposes a particular design scheme (called
YooHoo) to achieve them. Section 5 outlines the related work and
how YooHoo will contribute to this body of research. Section 6
provides future directions for our approach.

This paper contributes the concept of developer-specific aware-
ness and a proposal about how it could be provided.

2. SCENARIO
Complex systems often have many dependencies on external sys-

tems. Consider a developer on a team that has written an appli-
cation that keeps track of store inventories. They have chosen to
implement the application using the Rich Client Platform (RCP)
application framework 1. This means they have external dependen-
cies on the RCP framework as well as the SWT widget framework.
Additionally, to support full-text searches of their inventory, they
use Apache Lucene. The Apache Derby database is used to track
the inventory while JDOM is used for importing and exporting data
from the system while HTTPClient enables importing entries from
remote HTTP servers. JFreeChart is used to graph how the in-
ventory has changed over time while gnupdf enables reports to be
generated in PDF format. This system currently depends on no less
than 8 external projects to properly function.

The team tests and deploys the system within the company. Two
months later one of the developers updates the HTTPClient library
to the latest version as it fixed several bugs relevant to some new
code he was writing. Three days later one of his fellow developers
is assigned a bug that states that her unit tests are failing: one of her
methods is not catching an exception it should. This second devel-
oper is perplexed because she knows that she has not changed this
code in a long time. Looking into the bug she sees that HTTP-
Client’s GetMethod.getResponseBodyAsString() method is
throwing an IOException that she is not handling properly. She
knew that HTTPClient had been upgraded, from talking to one of
her teammates, but did not know that this upgrade would affect
her code as she thought the upgrade primarily fixed bugs. Unfor-
tunately, the new version had changed the getResponseBodyAs-
String() method to throw an exception instead of returning null.
After changing her code to handle the exception and re-running the
test suite, she closes her bug.

In this case the developer was caught off guard; she did not
know that the HTTPClient upgrade would affect her. Even look-
ing through the extensive change list manually, she did not notice
the change amongst the numerous other changes associated with
a major update of the feature list. The difficulty in keeping ap-
prised of these low-level changes is exacerbated by the fact that she
must track the development of 7 other major projects in addition to
HTTPClient; the burden of trying to keep abreast of these changes
is excessive.

3. REQUIREMENTS
A developer-specific awareness system can only be effective if

developers make use of it. For this to happen, it needs to provide
an added value beyond simply listing the complete change history
for a project as it happens. While there may be value in aggregating
the change history streams when external dependencies from many
projects must be considered, this also exacerbates the amount of
information the developer must consider. DSA streams would be

1http //wiki.eclipse.org/index.php/Rich_Client_Platform

an effective mechanism to reduce the number of awareness events
that the developer must consider; these would maximize the chance
that an awareness notification is applicable to the developer.

DSA streams should be tailored to help developers keep abreast
of what other developers are doing to code they are dependent
upon; as such, these streams should involve analysis and presenta-
tion of the changes as more than just textually-represented events.
By analyzing changes semantically, the stream can further increase
the value of any notification to the developer by prioritizing the no-
tifications it presents to them. For instance, a change that modifies
the signature of a method that a developer depends upon (and would
break his code after integration takes place) is of much higher pri-
ority than one that adjusts the white space or documentation for that
same method.

There are three key tasks that should be automated to minimize
the amount of effort required of the developer to configure and use a
DSA system. (a) The system should infer what code the developer
owns by analyzing all of the source code in the developer’s project
and its past change history. Ownership should be determined at as
fine a granularity as possible (e.g., at the method- or field-level).
(b) The system should determine what external structural depen-
dencies the developer’s code has using static analysis. An external
dependency is defined as one on any class, interface, method, or
field that the developer does not own. (c) Relevant changes for
these dependencies should be retrieved by automatically locating
and downloading any changes for a particular external dependency
without the developer’s intervention. In addition to this automated
support the developer should also have the ability to set their own
interest levels on a global and per-project basis.

Providing a flexible means for conveying awareness notifications
to developers enables a DSA system to both employ several low-
impact, non-intrusive visual cues to convey low-priority change
information as well as selectively use highly-visible notification
mechanisms for changes that may have a large impact on the de-
veloper’s code.

4. THE YOOHOO DESIGN PROPOSAL
There are many possible designs that could be employed to sat-

isfy the requirements given in Section 3. We describe one such de-
sign, which we call the YooHoo developer-specific awareness sys-
tem. YooHoo will integrate with the developer’s workflow while
automatically providing developer-specific notifications in a flexi-
ble manner.

YooHoo notifications will not be instantly available to the devel-
oper; his development environment will poll for relevant changes at
specified intervals. This interval can be set on a per-project basis: if
a developer knows that a system he is dependent upon is frequently
changing, YooHoo could check for updates every 5 minutes; if he
does not need quick updates for another project, he can set it to
poll on a daily basis. In the scenario of Section 2, the developer
may want to be frequently notified of changes to her system that
affect her, whereas changes to the 7 external libraries can happen
less frequently.

4.1 Determining relevance
Identifying relevant dependencies. We will develop heuristics

that will analyze the developer’s system and past change history to
infer what code the developer currently owns; the developer will
also be able to add and remove code from this list manually. De-
velopers can own code at a granularity as specific as as individ-
ual methods, fields, or classes; or as coarse as files, packages, and
projects. Once the developer’s code has been identified, YooHoo
will perform lightweight static analysis on it to identify a list of

external dependencies that his code relies upon. As with the own-
ership of the code, the developers will be able to de-select any of
these external dependencies for which he does not want notifica-
tions (and add others in which he is interested).

Retrieving relevant changes. Using the list of external dependen-
cies for which the developer is interested in notifications, YooHoo
connects with the change repositories for these systems and re-
trieves information for these entities. This retrieval will be at the
file-level as that is the level at which most software configuration
management (SCM) repositories operate. YooHoo will not retrieve
any change information for portions of the external systems that are
not relevant to the developer. Further details about how this might
be done are given in Section 4.3.

Assigning severity to a change. Once the file-level details have
been retrieved from the remote change repositories, YooHoo will
first determine if the change modifies any parts of the file that cor-
respond to entities the developer is dependent upon. If the change
is relevant, YooHoo will then further analyze the change to deter-
mine its nature: Was only white space changed? Did the method
gain some more external dependencies of its own? Did the API for
the method change? Such information will be used to summarize
the nature of the change for the developer and to assign a sever-
ity indicator to it. The summarization will enable the developer to
glance at a change notification and get a high-level summary of how
the code was modified without having to look at the diff associated
with the change.

4.2 Notification mechanism
YooHoo will provide a variety of notification mechanisms to give

change notifications a visual prominence appropriate to their sever-
ity. Low-severity changes will not interrupt the developer’s work-
flow, whereas high-severity changes will be made obtrusive as they
may require some immediate action to resolve.

Assuming an extensible integrated development environment
(IDE), YooHoo will annotate the source code in the developer’s edi-
tor to provide passive notifications. By annotating both the text that
corresponds to the dependency that has changed, as well as the gut-
ter icons in the vertical ruler, we can provide feedback of both the
severity and recency of the change using colour and translucency.
Enhanced tool tips will give a complete overview of the change if
the developer hovers over annotated code or its corresponding gut-
ter icon.

If the developer is actively seeking recent related changes, we
will provide a feed-style view that lists recent changes in reverse-
chronological order, giving an indication of each change’s severity,
originating project, author, and name of the changed entity. Select-
ing any change loads the same page as the passive notification tool
tip that shows all of the details of the change. The feed list will
be sortable in terms of originating project, the name of the depen-
dency that was changed, our analysis of the severity of the change,
author, and when the changed occurred. The feed list will also have
a status field that the developer can check off if they have dealt with
the change. Developers will be able to filter the list (for instance re-
moving low-priority updates for a specific project), and specifically
delete any notifications they are not interested in. Another aspect
of active notifications will be to promote high-severity change noti-
fications into other views in the developer’s IDE; this may include
adding the change to the developer’s current task list.

4.3 Technical details
A number of engineering problems must be overcome for

YooHoo to work properly; these are important to resolve properly
to ensure a seamless and automated experience for the developer.

YooHoo will be deployed as a client–server system. Each SCM
repository will have an associated YooHoo daemon that is notified
whenever changes are committed. A master server will enumerate
each of the project-level daemons so that other systems can ac-
cess their change data. Individual daemons can choose not to list
themselves with the master if they so choose (for privacy reasons);
through the client preferences, these daemons can still be added by
the developer.

The client will poll for changes at a predetermined interval from
the server; this interval will be configurable on a per-project basis
(e.g., if a team is changing its code rapidly, a higher frequency of
polling them would be possible). The analysis portion will be un-
dertaken partially at the daemon and partially on the client. The
client will request changes for specific dependencies from the dae-
mon but the final filtering and analysis of these changes will be
undertaken on the client.

Our initial client implementation will integrate with either the
Eclipse or Jazz IDEs; daemons will be provided for CVS, Subver-
sion, and the Jazz SCM repository.

4.4 Addressing the scenario
When built, the YooHoo DSA system would help the developer

in the scenario from Section 2 in one specific way. After getting
to work one morning, she could see from her awareness feed that
a high-priority change had been made to a dependency that would
affect her. YooHoo would state that GetMethod.getResponse-
BodyAsString() had been changed and that it now threw an
IOException. She could also directly navigate to the locations
in her code where this API was used, and fix the problem before
her team even upgraded to the latest version of HTTPClient.

This scenario dealt with an external library being updated; a de-
veloper working on a large project comprised of several develop-
ment teams in a rapid development phase would also have depen-
dencies on ‘external’ code that is frequently changing. The YooHoo
DSA system would also help keep these developers appraised of
changes relevant to them, reducing the number problems they must
resolve when the teams integrate their code.

5. RELATED WORK
Damian et al. studied some of communication challenges faced

by a globally-distributed software team. Two of their three main
observations were that awareness networks dynamically change
and an overabundance of information can lead to broken builds [3].
Our design for YooHoo addresses these two observations. As
the code a developer owns and the dependencies within that code
changes the notifications the developer receives will automatically
be adapted. To address information overload developers will only
receive notifications that are relevant to the code they own.

After interviewing several software teams, Singer found that pro-
grammers rely heavily on the code as their primary source of infor-
mation when they are trying to understand a system [10]. Gutwin
et al. found that developers can effectively communicate using chat
and mailing-lists if they committed to those tools [8]. These find-
ings have strongly influenced how we have designed YooHoo: we
rely only on source-code related information (rather than other
communication artifacts such as bugs and documents) and our com-
munication mechanism is designed to be lightweight; we do not re-
quire explicit work on the part of the committer or client developer
to signal or gather notifications.

Several systems enable developers to see visual representations
of various aspects of source code. SeeSoft provides a line-by-line
view of source code attributes [5]. The Aspect Browser [7] and
Code Thumbnails [4] projects provide graphical, abbreviated views

of source code that the developer can use to understand large swaths
of source code at a time. These systems differ from YooHoo in that
they are developer-driven exploratory tools; they do not actively
notify the developer of interesting changes. Ariadne creates a ver-
sion of the structural graph that focuses on the people associated
with each edge; this system helps developers to identify any rele-
vant developer for any part of the program’s call graph [11].

Two existing awareness systems are of particular relevance to
YooHoo. FASTDash provides a real-time awareness visualization
of the all of the artifacts shared by a team [1]. This visualization
updates in real-time, as developers open and close files. FASTDash
is well-suited to large-screen displays in team common-areas, or on
dedicated monitors. It enables any developer to figure out what ev-
ery other team member is doing at-a-glance. In contrast, YooHoo
creates customized awareness streams for every developer based on
their current development context, their configurable preferences,
and any code that they own. YooHoo is not suitable for gaining
general awareness of other team members but instead helps the
developer become aware of events that are specifically relevant to
their work.

Palantír provides a push-model configuration management sys-
tem that increases awareness of changes in the source code reposi-
tory by broadcasting them to other users of the same repository [9].
Palantír analyzes every commit that is made to the repository to
measure the severity of the change; this information is also pushed
to other repository clients, in a lightweight manner. Palantír and
YooHoo share many common traits: they both aim to inform de-
velopers of relevant changes in a lightweight fashion using a no-
tification system that actively alerts developers to changes. Nei-
ther system requires the developer to do any extra work to ensure
that the notifications are sent or that the correct developers receive
them. The systems also have major differences: Palantír provides
online updates of what other developers are working on as a global
overview; it does not tailor its display to show a developer only
those specific changes that are relevant to them.

6. FUTURE WORK
This paper has outlined a conceptual framework for developer-

specific awareness notifications the problem they attempts to re-
solve. We have also discussed YooHoo, our proposed DSA so-
lution. We have written the structural-analysis portion of the tool
that can determine the dependencies for which the developer should
receive notifications. We will next build the agent that collects
changes and prepares them for distribution. Once this is done we
will build the client tool that alerts the developer of any relevant
changes; this will be in the form of both an IDE integration and a
more traditional feed-based approach. Finally, we will investigate
means for analyzing the changes that have been made, to provide
the developer with some indication of level-of-impact with respect
to their systems.

Evaluation of YooHoo will proceed in two phases: first we will
conduct an empirical evaluation using existing development his-
tory to determine how effectively we can deliver developer-specific
awareness notifications for a modelled developer owning a partic-
ular module of an existing system; secondly, we will provide real
developers with YooHoo and perform a longitudinal study to see if
they find it useful and usable.

7. CONCLUSION
As developers work on larger software systems, they work in in-

creasingly disconnected organizations and their code becomes in-
creasingly dependent on external systems. These two factors com-

bine to make their code more susceptible to external source code
changes that could impact their code, while remaining oblivious to
the issue. In this paper we have proposed the YooHoo developer-
specific awareness system that tracks changes as they are commit-
ted and provides developers with personalized notification streams
alerting them to changes that may directly impact their code. These
alerts can help the developer adapt their code as needed, or to ini-
tiate a conversation with the committing developer, as necessary.
YooHoo aims to help developers be more connected both with their
teammates’ activities and with external changes that could break
their code; by preempting the manifestation of these changes as
bugs, the developer can spend more time working on their system
without having to fear being surprised by changes in the code upon
which they depend.

8. REFERENCES
[1] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and

George G. Robertson. FASTDash: A visual dashboard for
fostering awareness in software teams. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 1313–1322, 2007.

[2] Li-Te Cheng, Susanne Hupfer, Steven Ross, and John
Patterson. Jazzing up Eclipse with collaborative tools. In
Proceedings of the Eclipse Technology Exchange, pages
45–49, 2003.

[3] Daniela Damian, Luis Izquierdo, Janice Singer, and Irwin
Kwan. Awareness in the wild: Why communication
breakdowns occur. In Proceedings of the International
Conference on Global Software Engineering, pages 81–90,
2007.

[4] Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. Code
thumbnails: Using spatial memory to navigate source code.
In Proceedings of the Visual Languages and Human-Centric
Computing, pages 11–18, 2006.

[5] Stephen G. Eick, Joseph L. Steffen, and Jr. Eric E. Sumner.
SeeSoft: A tool for visualizing line-oriented software
statistics. IEEE Transactions on Software Engineering,
18(11):957–968, 1992.

[6] Jr. Fred P. Brooks. The mythical man–month. In Proceedings
of the International Conference on Reliable Software, page
193, 1975.

[7] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato.
Exploiting the map metaphor in a tool for software evolution.
In Proceedings of the International Conference on Software
Engineering, pages 265–274, 2001.

[8] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group
awareness in distributed software development. In
Proceedings of the ACM Conference on Computer-Supported
Cooperative Work, pages 72–81, 2004.

[9] Anita Sarma, Zahra Noroozi, and André van der Hoek.
Palantír: Raising awareness among configuration
management workspaces. In Proceedings of the International
Conference on Software Engineering, pages 444–454, 2003.

[10] Janice Singer. Practices of software maintenance. In
Proceedings of the International Conference on Software
Maintenance, pages 139–145, 1998.

[11] Erik Trainer, Stephen Quirk, Cleidson de Souza, and David
Redmiles. Bridging the gap between technical and social
dependencies with Ariadne. In Proceedings of the Eclipse
Technology Exchange, pages 26–30, 2005.

