
Semi-Automating Pragmatic Reuse Tasks

Reid Holmes and Robert J. Walker
Laboratory for Software Modification Research

University of Calgary
Calgary, Alberta, Canada

rtholmes, rwalker@cpsc.ucalgary.ca

Abstract

Developers undertaking a pragmatic reuse task must col-
lect and reason about information that is spread through-
out the source code of a system before they can understand
the scope of their task. Once they have this understanding,
they can undertake the manual process of actually reusing
the source code within their system. We have created a
tool environment to help developers plan and perform prag-
matic reuse tasks enabling them to reason about and per-
form larger reuse tasks than they generally feel comfortable
attempting otherwise.

1. Overview
Developers commonly encounter situations where they

need functionality that they know exists in an existing
project. Rather than re-develop that functionality, or com-
ponentize it (with the potential to break the other project), a
pragmatic reuse approach is sometimes preferable [1, 5, 2].
Pragmatic reuse tasks involve extracting functionality from
an existing system and reusing it within another system. As
such functionality is not necessarily designed for the needed
reuse scenario, the developer must determine where to de-
fine the boundary between the code to be reused and that
not to be reused, and how to cope with the dependencies
that will dangle across this boundary after the functionality
is carved out.

We have developed a reuse environment to aid devel-
opers in pragmatic reuse tasks. Our environment, called
G&P, helps developers both to plan and to perform prag-
matic reuse tasks. G&P currently consists of two compo-
nents: the planning component and the enactment compo-
nent. We describe each in turn.

The planning component (called Gilligan) allows the
developer to simultaneously investigate the dependen-
cies from their desired functionality, and to construct a
lightweight plan about how these should be handled [2].

While these structural dependencies are crucial to under-
standing pragmatic reuse tasks, it is burdensome to discover
them by inspecting the source code. While the direct depen-
dencies of any piece of code are clear to see, it is difficult to
see how many indirect dependencies any one dependency
requires without navigating through many source files. For
this reason, Gilligan provides developers with a list-based
abstraction of the dependencies within the code that the de-
veloper wants to reuse [3]. This abstraction supports quick
navigation of the statically-derivable structural dependen-
cies within the system, enabling the developer to investi-
gate each dependency of their desired functionality without
having to read through many source files. As the devel-
oper investigates the code they can annotate the abstraction
recording their decisions about any dependency: Do I want
to reuse this? Should I remap this to existing functionality
within my system? Is this code common between the source
system and my project? Ultimately, this annotated view en-
codes a plan of the reuse task; this plan describes which ele-
ments should be reused and how any dangling dependencies
should be managed. The plan can be automatically evalu-
ated for completeness, and the developer’s attention drawn
to any remaining, dangling references.

Small decisions made by the developer while planning
out their reuse task can have large consequences on the
amount of work they must perform. For instance, if the orig-
inating system used a logging infrastructure different from
the one that the developer’s system uses, they may have to
either remove all references to the logging framework or
change each one to instead log compatibly with their sys-
tem. While planning a pragmatic reuse task, the developer
is constantly weighing the cost of reusing a specific depen-
dency against the cost of having to replace or eliminate it
once the code is reused in their system.

The enactment component (called Procrustes) automates
the enactment of the reuse plan [4]. Using the plan, Pro-
crustes automatically extracts the relevant code from its
originating system, transforms the source code as necessary
to minimize the number of compilation errors arising from



removing the code from its originating system, and injects
it into the developer’s system. By resolving many of the
compilation errors the developer would have to otherwise
manually fix, Gilligan helps shift their focus from low-level
trivial compilation problems to more high-level conceptual
issues that may interfere with their reuse task. Automation
also enables the developer to quickly iterate on their reuse
plan and see how their decisions are reflected in the source
code. This enables developers to apply their skills in work-
ing with source code, while still enabling them to quickly
investigate alternative plans using the abstract representa-
tion of the code’s dependencies. By supporting quick it-
eration, Gilligan allows the developers to investigate alter-
natives in the reuse plan, which would otherwise be over-
whelming to perform manually.

We have performed both quantitative and qualitative
studies of the G&P environment and have found that devel-
opers can use it to effectively plan and perform reuse tasks.

2. Scenario
In this scenario we will briefly describe how the devel-

oper builds, enacts, and iterates on a pragmatic reuse task.
The aTunes1 music system has a panel that displays related
artists for any song that it is currently playing. A developer
decides they want to reuse this feature within their own sys-
tem. This entails finding the relevant parts of aTunes, ex-
tracting them, and integrating the code into their system.

The developer starts by using Gilligan and select-
ing AudioScrobblerService.getSimilarAr-
tists() as the initial point of investigation. Gilligan
points out that this method has 15 direct and 103 indirect
dependencies. The developer decides that this code is
relevant to their reuse task and annotates it for reuse
(as shown by the green bar in Figure 1). The developer
then presses the enact button as they want to see, in the
code, how the reuse task is shaping up. At this point
they are faced with 106 errors that they must resolve.
Continuing their investigation, the developer finds that
reusing AudioScrobblerCache increases the number
of errors they must resolve by 79; because of this they
decide to investigate this dependency in depth as the cost of
reusing it seems very high. Upon further investigation this
class simply stores a local copy of related artists and does
not actually contribute directly to their location; thus, this
dependency is rejected.

The final reuse plan for this task involved reusing 424
lines of code from 9 classes in less than 20 minutes. Gilli-
gan is able to resolve 63 compilation errors automatically
leaving the developer with only 3 errors they have to man-
ually resolve. Visually inspecting the code the developer
finds they can be easily resolved and chooses to fix them

1http://atunes.sf.net/

Figure 1. Snippet of a reuse plan.

manually rather than go back to the abstract view of the
system.

3. Related Work
While the majority of reuse research has focused on

black box strategies, the importance of pragmatic ap-
proaches has been previously identified [6, 1, 5]. We have
previously described how pragmatic reuse plans work [2].
The details concerning how Gilligan automates the enact-
ment of reuse plans have also been described [4].

4. Conclusion
Our tool support helps developers plan and perform

pragmatic reuse tasks in three ways. First, it helps them
investigate the costs of reusing any particular piece of code.
Secondly, it enables them to investigate alternative reuse
strategies. Finally, it relieves a large percentage of manual
work the developer must engage in to perform the reuse task
by automatically copying and modifying the source code for
them. By providing these benefits we have found develop-
ers are more comfortable attempting larger reuse tasks than
they would otherwise try manually.

References

[1] J. R. Cordy. Comprehending reality – practical barriers to
industrial adoption of software maintenance automation. In
Proceedings of the International Workshop on Program Com-
prehension, pages 196–207, 2003.

[2] R. Holmes and R. J. Walker. Supporting the investigation and
planning of pragmatic reuse tasks. In Proceedings of the In-
ternational Conference on Software Engineering, pages 447–
457, 2007.

[3] R. Holmes and R. J. Walker. Task-specific source code de-
pendency investigation. In Proceedings of the International
Workshop on Visualizing Software for Understanding and
Analysis, pages 100–108, 2007.

[4] R. Holmes and R. J. Walker. Lightweight, semi-automated
enactment of pragmatic-reuse plans. In Proceedings of the
International Conference on Software Reuse, 2008.

[5] C. Kapser and M. W. Godfrey. “Cloning considered harmful”
considered harmful. In Proceedings of the Working Confer-
ence on Reverse Engineering, pages 19–28, 2006.

[6] C. W. Krueger. Software reuse. ACM Computing Surveys,
24(2):131–183, 1992.


