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1. INTRODUCTION

Gene expression profiling has been studied extensively in an attempt to deter-
mine the transcriptional changes, both causative and correlative, associated
with the progression of cancer [Gray and Collins 2000]. Such an approach has
the potential to determine new prognostic and diagnostic biomarkers in addi-
tion to new gene targets for therapeutic intervention.

1.1 Background

Cancers are typically classified based on macroscopic qualities such as the tis-
sues they developed in. However, the same type of cancer can have different
reactions to treatment in different people, and on the other hand, one treatment
can be effective for cancers originating in different tissues. A possible explana-
tion for these observations is that cancers, which are similar on a macroscopic
level, may in fact be different at the sub-cellular level, and that certain can-
cers that originate in different tissues may actually be similar to each other
at the sub-cellular level. The sub-cellular level of a tissue is characterized by
very complex biochemical processes of which only a very small fraction is un-
derstood today. Most of the functions of a cell are performed by proteins that
are produced by the cell via a mechanism called gene expression.

Gene expression is the process of making so-called messenger RNA (mRNA)
copies of a gene (a part of the DNA strand of the cell). mRNA, which is essentially
a sequence of four bases denoted by A, C, G, and T, is then translated in the cell
into an amino acid sequence that forms the basis of a protein. Each tissue type
in an organism requires different amounts of different proteins to perform its
duties. The amount of a particular protein produced by a cell is partly controlled
by the number of corresponding mRNA copies. The relative levels of mRNA of
each gene in a tissue type are called the tissue’s gene expression profile. This
profile is assumed to be characteristic for a particular tissue type. Biochemists
assume that many of the genes in the human genome are only expressed in one
tissue type; but there are also so-called “housekeeping genes” that are expressed
in all cells, for example, those that control transcription and translation.

Certain diseases, especially cancer, are caused by a sequence of errors that
radically alter the normal pattern of gene expression. There may be a muta-
tion in one or several genes that up- or down-regulate (i.e., control the rate
of expression of) several other genes. For instance, the proteins that prevent
uncontrolled cell growth and promote cell death are no longer produced, and
the focus of the cell’s gene expression machinery switches from producing the
proteins appropriate to its tissue type to producing mostly proteins that are
needed for cell growth and division. Theoretically, if the gene expression profile
of a diseased tissue sample were known, it could be used to find out what has
gone wrong in the cell and provide clues as to how to fix it.

There are two major methods of measurement for gene expression data,
which produce a snapshot of the gene expression processes in a cell sample, at
a certain point in time—the microarray method and the SAGE method.

In the microarray method, the sequences of the mRNAs that are mea-
sured must be known in advance. Many single-stranded pieces of DNA that
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complement these short sequences are printed on a glass chip. The chip is then
brought into contact with the mRNAs extracted from a cell sample. The mRNA
in the sample binds to its DNA complement on the chip, and causes it to fluo-
resce. This fluorescence is detected with a laser. The more mRNA of a certain
sequence is in the sample, the more its complementary spot on the chip will
light up. An advantage of this method is that it is relatively inexpensive to
produce large amounts of data. The major disadvantage, however, is that the
experimenter must choose the mRNA sequences to be detected in a sample, and
the sequences useful for cancer profiling may not be known.

Serial Analysis of Gene Expression (SAGE) [Velculescu et al. 1995] allows
for the global profiling of an mRNA population, regardless of whether the tran-
scripts have been previously identified. In the SAGE method, all the mRNA of
a cell sample is collected, and a short subsequence, called a tag, is extracted
from each mRNA (most commonly 10 base pairs in length, excluding the site
for the restriction enzyme). These tags are then enumerated through standard
DNA sequencing—the frequency of each tag is counted, giving the relative lev-
els of the corresponding mRNA in the cell sample. The information about the
frequencies of detected mRNA tags in a tissue sample is called a SAGE library.

The SAGE method is highly quantitative and SAGE profiles from different
tissues can be readily compared. A substantive resource of SAGE data has been
created as part of the SageMap initiative of the National Cancer Institute, USA
[Lash et al. 2000], now part of the Gene Expression Omnibus [Edgar et al. 2002].
The availability of such a resource allows for a global comparison of normal
tissues, cell lines and cancer types. Such a comparison may shed light on many
interesting questions, such as:

� Is the SAGE method robust? Different libraries were created at different
places by different groups. Is the SAGE method itself reproducible?

� Do different types of cancer behave differently at the gene expression level?
� Are there readily detectable subtypes of cancers?
� Is there such a notion that cancer type A is closer to type B than to type C?
� Can we identify, by computational analysis, a set of genes that characterize

different types of cancer?

Frequently used methods to characterize and extract information from
gene expression data are clustering (also known as “unsupervised classi-
fication/learning”) and classification (also known as “supervised classifica-
tion/learning” and in some information retrieval contexts as “categorization”).
The goal of a clustering algorithm is to find unknown groups that may exist
in a data set, whereas classification is supervised in the sense that classes are
known beforehand and the methods try to learn a function that assigns objects
correctly to one of the known classes (for an overview of different clustering and
classification methods see, for instance, Han and Komber [2000].

There are many different types of clustering algorithms; the most common
distinction is between partitioning and hierarchical algorithms. Partitioning
algorithms construct a flat (single level) partition of a database D of n objects
into a set of k clusters such that the objects in a cluster are more similar to each
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other than to objects in different clusters. For a given number of clusters k,
partitioning algorithms typically try to minimize an objective function such as
the sum of the (squared) distances of objects to “their” cluster representative (i.e.
the representative that is closest to them). Hierarchical clustering algorithms,
on the other hand, do not actually partition a data set into clusters, but compute
a hierarchical representation, which reflects its possibly hierarchical clustering
structure. The well-known single-link method and its variants produce a so-
called dendrogram, which is a tree that iteratively splits a data set into smaller
subsets until each subset consists of only one object. Consequently, the root
represents the whole data set, and the leaves represent individual objects. A
different hierarchical clustering algorithm, which generalizes density-based
clustering, is OPTICS [Ankerst et al. 1999]. This algorithm produces another
type of output, a so-called reachability plot, which is a bar plot showing clusters
as “dents” in the plot. In this article, we base much of our analysis on the result of
this clustering method, which improves over traditional hierarchical clustering
algorithms in several ways:

� The single-link or nearest-neighbor method, suffers from the so-called “single-
link” or “chaining” effect by which clusters could be incorrectly merged if
they are connected by a single line of points having the same inter-object
distances as the points within the clusters (those “lines” often exist especially
in data sets that contain background noise). OPTICS generalizes the nearest
neighbor method in the sense that for a special parameter setting, the result
of OPTICS is equivalent to the result of the nearest neighbor method. The
same parameter, however, can be set to different values, which will weaken
chaining effects and thus be able to better separate clusters in noisy data
sets.

� OPTICS is more efficient on large data sets than traditional hierarchical
clustering algorithms, if the dimension of the data set is not too high. For the
88 libraries we are working with in this article, however, this aspect is not
important.

� The output of the OPTICS algorithm is a reachability plot, which in our
opinion gives a clearer view of the hierarchical clustering structure and the
density of the clusters than the typical dendrogram produced by traditional
hierarchical clustering methods. However, a dendrogram can be generated
from a reachability plot and vice versa [Sander et al. 2003].

The reachability plot is a simple bar plot, which visualizes a cluster order-
ing of the data set, where each library is represented by one bar. It shows
simultaneously:

� which clusters are formed by which points (easily recognized as “valleys” in
the plot),

� how dense clusters are in relation to each other (the deeper the “valley”, the
denser),

� a lower bound on the distance between 2 clusters (tallest bar between two
“valleys”),
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Fig. 1. Result of OPTICS for the given 2-dimensional data set (a), represented as a reachability
plot (b), and a dendrogram (c). The regions in the plots corresponding to (nested) clusters are
indicated by letters A, B, C.

� the hierarchical structure of the clusters (“nested valleys”), and
� which points are outliers (very large bars in the plot, not at the border of a

cluster).

How to read dendrograms and a reachability plots is illustrated in Figure 1,
using a simple 2-dimensional point data set.

1.2 Related Work

The SAGE method was introduced in 1995 [Velculescu et al. 1995]. The same
group [Zhang et al. 1997] also proposed that the SAGE method could be used to
study the differences between cancerous and normal cells. However, they only
provided a brief example of the analysis that could potentially be done and did
not provide the results of such an analysis.

In 1999 a website (http://www.ncbi.nlm.nih.gov/SAGE) was created as an off-
shoot of the Cancer Genome Anatomy Project (CGAP) at the National Center
for Biotechnology Information (NCBI). CGAP is dedicated to collecting data
on the genetics of cancer. An introduction to CGAP and an explanation of its
purpose and the tools it contains is presented in Strausberg et al. [2000]. The
purpose of the SAGE website is to provide data to the public, so that researchers
could benefit from the SAGE technique without having to bear the expense of
creating all of the data themselves [Lal et al. 1999]. Since then, various labora-
tories have submitted SAGE data to the site, both cancerous and noncancerous,
from 10 different tissue types. The website also contains various tools to help
researchers analyze the data [Lash et al. 2000]. However, it is hard to perform
any analysis of the tag frequency distribution on a larger set of libraries.

The use of a clustering algorithm to study gene expression data was first
proposed by the seminal paper of Eisen et al. [1998] in the context of microar-
ray data. The authors applied hierarchical pairwise average-linkage clustering
(using correlation coefficient as similarity measure) to the genes on microar-
rays for the budding yeast genome and a human fibroblast cell line. The same
clustering methodology (a software is publicly available from the Eisen lab at
http://rana.lbl.gov/) has since then been used for different analyses of microar-
rays, including the clustering of genes on microarrays for normal and cancerous
breast tissue [Perou et al. 1999], the clustering of different tissues on microar-
rays for different types of lymphoma, in order to detect possible subtypes of
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lymphoma [Alizadeh et al. 2000], and the clustering of both the tissues and
the genes on microarrays for normal and cancerous colon tissue [Alon et al.
1999]. Other clustering paradigms have also been tried on microarray data,
such as k-means (e.g., Tavazoie et al. [1999]), self-organizing maps (e.g., Golub
et al. [1999]), model-based clustering (e.g., Yeung et al. [2001]), and specially
designed algorithms such as the method of Ben-Dor et al. [1999] which is based
on a biological model of genes.

Reports on cluster analysis of SAGE data have only recently started to appear
(including some preliminary results, which we extend in this article [Ng et al.
2001]. Most approaches simply apply the software package from the Eisen lab.
Porter et al. [2001] clustered both genes and libraries of 8 normal and cancerous
breast tissues, finding differences in the variability of gene expressions in nor-
mal and cancerous cells. Nacht et al. [2001], clustered 9 normal and cancerous
lung tissues, and showed that normal and cancer could be separated based even
on only the 115 most abundant tags. Van Ruissen et al. [2002] used two-way
clustering of both libraries and genes of different skin tissues, finding two clus-
ters of genes that are up-regulated in cancerous tissue. Hashimoto et al. [2003]
applied hierarchical clustering to genes of different types of leukocytes, showing
that genes are differentially expressed in each leukocyte population, depending
on their differentiation stages. Buckhaults et al. [2003] studied 62 surgically
removed samples of 4 different cancers (primary cancers and secondary metas-
tases of ovary, breast, pancreas, and colon) in order to predict the origin of a
cancer. They first selected only the top-ranked tags identified by a support vec-
tor machine classifier: tags that best separated between the four classes. Based
on these tags that best distinguish between the four classes they applied two-
way clustering to both genes and tissues detecting that metastases of a cancer
clustered together with their corresponding primary tumors.

1.3 Overview of Our Contributions

The previous clustering studies of SAGE were in general performed by different
labs that produced their own (typically very small sets of) libraries. The main
contribution of this article is a methodology for analyzing heterogeneous SAGE
libraries on a large scale.1 We first develop a sequence of steps to cleanse or pre-
process the libraries including missing tag imputation and subspace selection
(i.e., removing tags that may just be noise, and selecting tags that may be more
discriminating). We show that all four steps have to be applied together for an
effective subsequent analysis of the data—none of the steps alone can produce
satisfactory results.

After the libraries have been cleansed, we perform hierarchical clustering
using OPTICS on the libraries. Apart from clustering, we also apply nearest-
neighbour classification. This is to examine whether a specific type of cancer
has a strong identity or “signature” at the gene expression level.

We show that our methodology is effective in that it sheds light on some
of the biological questions we explore. Our analysis suggests that the SAGE
technique is robust. For instance, brain cancer libraries developed in different

1A preliminary version of this work appeared as Ng et al. [2001]
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laboratories form a strong cluster, suggesting that results obtained in different
laboratories are in fact comparable. Our analysis also indicates that brain and
breast cancer have much stronger gene expression signatures than ovarian
and prostate cancer do. Finally, our analysis finds one strong cluster of brain
and ovarian cancer libraries, suggesting that there may be interesting sim-
ilarities between the two cancer types. We also identify a set of genes that
distinguish this cluster from normal brain and ovarian tissues. In many cases,
literature searches confirm that the identified genes are promising candidates
for further analysis.

2. RESULTS

The following analysis is based on 88 SAGE libraries, which are publicly avail-
able on the NCBI SAGE website as of January 2001. Each of these SAGE
libraries is made of a sample from one of the following tissues: brain, breast,
prostate, ovary, colon, pancreas, vascular tissue, skin, or kidney. The other in-
formation consistently included with each library is whether it was made from
cancerous or normal tissue, and whether it was made from bulk tissue in vivo
or a cell line grown in vitro. The data in each library includes a list of 10-base
tags that were detected in the sample, and the number of times each tag was
detected. The number of unique tags in a library is the number of different tags
that were detected in the sample, each of which was detected with some integer
frequency. The total number of tag copies is the sum of all the frequencies of all
the tags in a library.

In analyzing the SAGE data, four major features need to be accounted for.
The first three issues are a consequence of the sampling and sequencing er-
rors associated with the SAGE method [Stollberg et al. 2000]: First, the SAGE
method is highly prone to sequencing error, which creates a large amount of
noise and obscures the clustering structure. Second, the libraries differ largely
in terms of total number of tag copies due to differences in the depth to which
individual SAGE libraries were sampled. Third, some of the SAGE libraries
have been subjected to very limited sequencing, having 0 values for most of the
tags. The fourth issue is that the “raw” data is extremely high dimensional.
For our cluster analysis, each tag corresponds to a dimension. Thus, if we con-
sider 50,000 tags simultaneously, each library corresponds to one point in the
50,000-dimensional space. But it is not clear which of the 50,000 dimensions
are relevant for cancer profiling. To deal with these problems, we designed four
preprocessing steps: error removal, normalization, missing tag imputation, and
subspace selection. Each of these steps is discussed in detail below.

2.1 Removing Erroneous Tags

If we assume that the single pass sequences used to generate the SAGE tags
have a base error rate of approximately 1% per base, then we can expect that
approximately 10% (1.00-(0.99)10) of the total number of tag copies in each
SAGE library will contain at least one sequencing error (an error can occur at
each of the 10 base positions). Since these errors result in noise and increase
the dimensionality of the data, our first preprocessing step is error removal.
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Within one library, up to 80% of the unique tags have a frequency of 1, but
these make up about 20% of the total number of copies of tags. Some of the
single frequency tags represent genuine low frequency mRNAs. However, it is
impossible to tell which of the single frequency tags are errors by only looking
at a single library.

Since the size of the set of possible tags is 410 ≈ 106, and only about 3 × 105

of these tags have ever appeared in any library, a sequence error in a tag most
likely represents a completely new tag that never appears in any other library.
Therefore, our method of removing erroneous tags without removing legiti-
mate single-frequency tags follows a thresholding approach (as used, e.g., by
Hashimoto et al. [2003]): remove those tags that have a frequency of no more
than 1 in all the libraries. In this manner, tags that have a frequency of 1 in
some libraries but a higher frequency in other libraries are not removed. This
approach taken to removing erroneous tags is similar to that now done by the
SAGE genie software, which generates a “confident tag list” (see Boon et al.
[2002]).

The total number of unique tags across all libraries (which is the dimension-
ality of the subsequent space upon which the libraries are clustered) before tag
removal is about 350,000; after the removal it is 58,524, which is a significant
reduction of the dimensionality of the data set as well as the noise. In each
library, between 5% and 15% of the total number of tag copies are removed,
which is in the range of the expected number of sequencing errors per library.

2.2 Normalization

The 88 SAGE libraries upon which we base our analysis were made by different
institutions. Because the amount of resources spent by these institutions for
sequencing varies widely, each library has a different total number of tag copies.
As a consequence, it is not meaningful to use some of the distance functions such
as the Euclidean distance to compare the libraries to each other, since their tag
frequencies are not on the same scale. Thus, we normalized the tag frequencies
by simply scaling them all up to the same total number of tag copies (e.g., tags
per million), which is a common way to compensate for unequal tag numbers in
SAGE data analysis (see, e.g., Porter et al. [2001]). For other distance functions
such as the correlation coefficient, this type of scaling does not have any effect.

2.3 Preliminary Attempts

In our early attempts to cluster the SAGE libraries, we investigated the use of
CLARANS [Ng and Han 1994], a k-medoids algorithm, which is a partitioning
algorithm that tries to find k objects as representatives of clusters so that the
sum of all distances of all objects to their closest representative is minimized.
We focused on a single tissue type: 14 breast tissue libraries that were available
at the time. We applied some simple screening procedures to reduce the dimen-
sionality of the data set, such as requiring a minimum frequency threshold
for tags. We tested several similarity and dissimilarity measures such as Eu-
clidean distance, and the correlation coefficient. This analysis showed that the
breast tissue libraries form clusters, but these clusters were formed according

ACM Transactions on Information Systems, Vol. 23, No. 1, January 2005.



A Methodology for Analyzing SAGE Libraries for Cancer Profiling • 43

to tissue source (cell line or bulk tissue) and not according to neoplastic state
(cancer or normal). All of the bulk tissue-derived libraries went into one cluster
while all the cell line-derived libraries went into another cluster. But even after
eliminating all tags that were only found in bulk tissues, the success in sepa-
rating cancerous breast tissue from normal breast tissue was only moderate.
Furthermore, CLARANS requires the user to specify the number of clusters to
be formed. From a biological standpoint, this number is hard to determine a
priori.

Because of these weak results, and because we actually wanted to see
whether some types of cancers were related to each other at the gene expres-
sion level as well as to find clusters within one category, we decided to use a
hierarchical clustering algorithm for a more detailed analysis. In contrast to
partitioning algorithms, hierarchical algorithms do not require the number of
clusters to be specified a priori. Hierarchical algorithms were used in many
previously published papers on the clustering of microarray data. For reasons
discussed in Section 1.1, our analysis here is based on the hierarchical clus-
tering algorithm OPTICS [Ankerst et al. 1999], and we will show both the
reachability plots and (for readers more familiar with the interpretation of tree
representations) the dendrograms of our clustering results.

Applying OPTICS naively to the SAGE data (after error removal and nor-
malization) does not produce a strong clustering structure. Figure 2a shows the
reachability plot using correlation coefficient as a similarity measure. Figure 2b
is the corresponding dendrogram. Each library is labeled by a library number
(001 to 088), cancerous or normal indicator (can, nor), bulk tissue or cell line
indicator (bk, cl), tissue type (bn = brain, bt = breast, co = colon, ki = kidney,
ov = ovary, pa = pancreas, pr = prostate, sk = skin, va = vascular) and a code for
the laboratory that created the library. For instance, the label 032-can-bk-bt-po
corresponds to the cancerous, bulk tissue breast library whose number was 32
and was created by the laboratory labeled po.

There are very few clusters: a brain cancer cell line cluster, a prostate cluster,
a pancreas cluster, a mixed cluster containing brain and vascular tissue, and
a breast cancer cell line cluster. Each of these clusters contains only 3 to 5
libraries, all of which are of a single type of tissue (with the exception of the
cluster containing both brain and vascular tissue). The other 56 libraries do
not group into pronounced clusters.

Note that there are several different possibilities for a similarity or dissim-
ilarity measure between SAGE libraries, such as the Manhattan distance, the
Euclidean distance, and the correlation coefficient. The one that is most com-
monly used in the literature for microarray data is the correlation coefficient
(c.f. Section 1.2). We clustered the SAGE libraries using all of the mentioned
functions and found that the clustering structures are typically very robust
with respect to the similarity function—they differ in general only slightly.
However, the correlation coefficient always resulted in the most pronounced
structure, and is also consistent with previously published work. Therefore, we
will present our results using the correlation coefficient. Furthermore, note
that we do not use the log scale as in typical microarray analyses. Inten-
sity values on a microarray chip represent the ratios of gene expressions of
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Fig. 2. Result of OPTICS after error removal and normalization.

a condition relative to a reference condition. These values are typically log
transformed, mainly so that equivalent fold changes in either direction (over-
or under-expression) have the same absolute value (x/y and y/x are very dif-
ferent, whereas log(x/y) = − log(y/x)). In SAGE, tag counts represent absolute
number of occurrences of a gene tag, so a log transformation is not necessary.
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The weak clustering result is consistent with our preliminary results using
CLARANS and indicates that we have to address the problem of missing values
due to incomplete sequencing and suitable subspace selection.

2.4 Missing Tag Imputation

After the outlined error removal, the total number of tag copies in a library
varies from 1293 to 79498. Consider all the libraries whose total tag counts are
below 30,000. Out of the 88, there are 28 such libraries. If we were to discard
these 28 libraries, we would have lost valuable data contained in them. If we
were to normalize the libraries just based on the existing tag counts, the counts
of some of the tags would have been exaggerated. The strategy we adopt is to
“impute” the counts of the missing tags. Specifically, for a given library with a
low total count, we use similar libraries to conservatively estimate the count
of a missing tag. This estimate allows us to include the library and its true tag
counts in our analysis. While the details of our imputation strategy are given
below, we basically use a method similar to those used for filling in answers
on incomplete surveys (see http://www.utexas.edu/cc/faqs/stat/general/gen25.
html).

Note that missing value imputation is not new to gene expression analysis.
But the estimation methods for DNA microarrays as proposed in Troyanskaya
et al. [2001] are not applicable in this case, since missing values in DNA mi-
croarrays are due to different types of errors. Those methods look at the gene
expressions of other genes in the experiments and use their values to esti-
mate a missing value. For instance, the best method reported in Troyanskaya
et al. [2001], the KNNimpute method, first selects the k genes that have the
most similar expression profiles to the gene having a missing value under some
condition; then a weighted average of the k most similar genes that have a
value under the same condition is used as an estimate for the missing value.
This method is based on the assumptions that errors occur randomly and lo-
cally at specific spots on the microarray, and that the gene with the miss-
ing value is over- or under-expressed by a similar factor as a small cluster
of genes. Both assumptions are not applicable in the case of our SAGE data
set. Here, missing values are systematic in the sense that an incomplete se-
quencing affects all genes in a specific condition or experiment. Furthermore,
the conditions or experiments involve very different tissue types where we
cannot assume that every gene is co-expressed in the same cluster of other
genes in all tissues, or that the absolute mRNA counts of co-expressed genes
are similar (even though they may be up- or down-regulated by the same
factor).

Therefore, in our approach, we adjust the frequency of tags in a library that
has a low total number of tag copies by using more complete libraries in the
same category—from the same tissue, source, and neoplastic state. For our
study, libraries containing 30,000 or fewer tags underwent this imputation,
the underlying assumption of this process being that it is more conservative to
consider a tag to be absent due to insufficient sampling alone in cases where the

ACM Transactions on Information Systems, Vol. 23, No. 1, January 2005.



46 • J. Sander et al.

same tag has been observed in libraries of similar origin sampled at a greater
depth. We intend to adjust the truncated SAGE libraries as conservatively
as possible in order not to introduce artificial similarities between them. Our
method for replacing missing tags is as following:

� Identify libraries with a low total number of tag copies. The threshold value
was set to 30,000 in consultation with experts familiar with the SAGE
method, subject to the constraint that not more than 30% of the libraries
were actually affected.

� For each of these,
• Create a list of libraries in the same category, which have a total number

of tag copies exceeding 30,000.
• Scale them down so that the total number of tag copies matches the total

number of tag copies of the low tag library. This gives an estimate of the
expression values in those libraries as if they were sequenced incompletely
to the same degree as the truncated libraries of interest.

• Replace each frequency 0 in the low-tag library with the lowest non-zero
frequency of that tag in the scaled down libraries. Since the intention here is
to solve the problem of the truncated libraries as conservatively as possible,
we replace the zeros with the lowest possible value from the scaled down
libraries, instead of, for instance, with a weighted average, or by replacing
the values in a truncated library with the values of the most similar down-
scaled library in the same category.

Of the 88 SAGE libraries studied, 28 were subjected to tag imputation. After
the low frequency tags were removed, the missing values were filled in, and
the libraries were normalized, the resulting data was clustered by OPTICS.
Figure 3a (reachability plot) and 3b (dendrogram) show the result, again with
correlation coefficient as similarity measure.

Basically, the same clustering structure as before is found; only the pancreas
cluster now includes 2 additional libraries. The imputation of missing values
did not change the data radically with respect to the clustering structure, and
did not create any “artificial” clusters by making libraries too similar to each
other. However, the imputation of missing values has important benefits for
subspace selection.

2.5 Subspace Selection

So far, we have used the whole set of tags when computing the similarities
between libraries on which a clustering algorithm is based, and the resulting
clustering structures using this whole space of features (tags) were very weak.
Thus, we embark on subspace selection, the goal of which is to identify a subset
of tags that discriminate between the following two kinds of tags:

� Tags that have similar expression levels in all or most of the libraries, inde-
pendent of neoplastic state, source and tissue type.

� Tags that have different expression patterns in different situations.
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Fig. 3. Result of OPTICS after error removal, normalization, and missing tag imputation.

The first kind of tags does not help in forming clustering structures. It even
produces a dilution effect to the true clusters, by disturbing the similarity and
dissimilarity of libraries. Thus, these tags are removed and only the discrimi-
nating tags are kept for further analysis.
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The key question here is how to select discriminating tags. Since the total
number of tag copies in our data set is extremely high, methods that search
over subsets of tags are computationally too expensive, and we have to re-
strict ourselves to a method that checks properties of single tags. A similar
strategy has also been employed in the context of cancer classification using
DNA microarray data sets. These methods typically compute a value for each
gene that measures the gene’s suitability for class separation. The genes are
ranked according to this measure, and the top m, or all genes with a value
above a certain threshold t, are selected. The values for m or t have to be spec-
ified by the user. Definitions that have been proposed for measuring a gene’s
relative class separation include, for instance, Golub et al. [1999] correlation
metric based on the means and the standard deviation of the expression val-
ues for a gene in the different given classes, and Ben-Dor et al.’s [2000] TnoM
score, which measures the, classification error when assigning the samples to
the classes only by comparing the expression value for the gene of interest to a
learned threshold. Those methods have some drawbacks in our context because
our data set contains samples from very different tissues and the correlation
of any tag with the classes cancer or normal might be very low, which in turn
would make it very difficult to specify the required threshold parameters for the
methods.

We addressed the issue of subspace selection by using the Wilcoxon rank sum
test [Wilcoxon 1945], which can tests whether two samples are taken from the
same population. In addition to not requiring input parameters, it is a nonpara-
metric statistical test—it makes no assumption concerning the distribution of
the two classes, and it can be successfully applied even to very small samples.
For all tests a significance level of α equal to 0.01 was used.

In our application, we want to detect possible similarities between cancers
in different tissue type as well as possible subtypes of a cancer in a particular
tissue type. Therefore, in order to avoid biasing the result, we cannot use tis-
sue specific differences in expression to reduce the number of tags. Therefore,
to select a relevant subspace of tags, we first applied the test on a tag by tag
basis to determine those tags that have significantly different expression lev-
els in cancerous versus normal cells, without regard to the tissue type. For the
Wilcoxon test, we look at two groups of tissues at a time (e.g., cancer versus
normal), and we consider the frequencies of a tag T in the libraries of each
group as a sample. We then apply the test to these two samples to determine
whether the (null) hypothesis that the two samples are taken from the same
population can be rejected (at the given confidence level). We retain a tag only
if its expression in cancerous and normal cells is significantly different. The
intuition behind this heuristic selection of a subspace of tags is that we only
want to select “informative” tags and remove those that do not have any indi-
vidual predictive ability (according to our statistical test). In particular, if the
distribution of the expression values of a tag are so similar in both classes (e.g.
cancer vs. normal) that we cannot reject the hypothesis that the values follow
the same distribution (according to the Wilcoxon test), their (individual) ability
to distinguish between the two classes is consequently very low and we do not
include this tag in the final subspace.
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As described earlier, our preliminary results indicated that the tissue source
(i.e., bulk tissue, or cell line) can dominate the similarity between the tissues.
We tried to weaken this kind of distortion by applying the test again to also
determine the tags that have significantly different expression levels in bulk
tissue versus cell line. Those tags were then subtracted from the set of poten-
tially cancer relevant tags selected in the first step.

To demonstrate the effect of our missing value imputation on the subspace
selection method, we first applied the Wilcoxon test to the SAGE data after
error removal and normalization, but without imputing missing values. The
Wilcoxon test selected 45,354 tags out of 58,524 when testing cancer versus
normal. 722 tags out of the original 58,524, were selected when testing bulk
tissue versus cell line. Only 49 of these tags were also present in the 45,354
tags selected by the first test. We removed these tags from our dataset, leaving
us with a dimension of 45,305. When clustered with OPTICS, we obtain the
result shown in Figures 4a and 4b. The subspace selection resulted in a slightly
more pronounced clustering structure than in the previous experiments. For
instance, the figure shows a large prostate tissue cluster containing 13 libraries.
However, most of the clusters are still very small and several of them are mixed
with respect to tissue type and neoplastic state. Furthermore, a large number
of libraries are not contained in any significant cluster.

Finally, the result of OPTICS on the SAGE data using all the pre-processing
steps in combination is shown in Figures 5a and 5b. In this case, the Wilcoxon
test selected 40,016 tags when testing cancer versus normal, and 186 of these
were also selected when testing bulk tissue versus cell line (i.e. 39,830 tags
remained). In this result the clusters are more prominent and all of them except
one are pure in terms of tissue type and neoplastic state.
� Eight dense clusters formed: ovarian cancer cell line, brain cancer cell line,

brain cancer bulk tissue, prostate tissue, pancreatic cancer, breast cancer cell
line, normal brain, and normal breast bulk tissue.

� For the soundness of our cluster analysis method for heterogeneous SAGE
libraries, it is important to validate that the libraries do not form clusters by
laboratories alone. Spurious clusters may be formed due to artificial labora-
tory effects, and the issue is complicated by the fact that many laboratories
produced only libraries of a single tissue type. On this regard, it is reassuring
that meaningful clusters consisting of libraries from different laboratories
have been found, and that libraries produced by the same laboratory have
been grouped into different clusters based on biological similarity.

� The prostate tissue cluster is almost pure—only 3 out of 12 libraries are nor-
mal while the rest are prostate cancer. However, since all of them were made
from bulk tissue samples, it is still possible that these 3 normal libraries con-
tain a lot of heterogeneity, presumably reflecting the difficulty in the clinical
dissection of prostate tumors. The prostate cluster is also interesting in that
the libraries came from different laboratories (i.e., pp, sr, ri and ch), strongly
suggesting that this cluster is formed for biological reasons.

� The ovarian cancer cluster did not appear in the any of the previous results,
and is surprisingly close to the brain cancer cell line cluster, which suggests
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Fig. 4. Result of OPTICS on the subspace selected by the Wilcoxon test including error removal,
normalization, but NO missing tag imputation.
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Fig. 5. Result of OPTICS on the subspace selected by the Wilcoxon test including error removal,
normalization, and missing tag imputation.
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that these two cancers may be related in some way. Furthermore, the ovarian
libraries and the brain libraries were produced by two different laboratories.
In a later section, we will investigate why these two types of cancers clustered
together and which tags they are similar for.

� We also see that we have succeeded to some degree in focusing our data
on tags that are related to cancer growth and development. For instance,
brain cancer bulk tissue and normal brain bulk tissue have been separated,
even though the were produced by the same laboratory (ri). But some further
analysis may be needed since the brain cancer bulk tissue and brain cancer
cell line clusters are in two different clusters, which means that there are
still significant differences between bulk and cell line tissue in the selected
subspace.

� We also see a larger breast cancer cell line cluster than in any of our previous
results, and a normal brain cluster and a pancreatic cancer cluster have
appeared for the first time.

These interesting observations are only possible when all four preprocessing
steps—error removal, imputation of missing values, normalization, and sub-
space selection by the Wilcoxon test—are combined. It is worth emphasizing
that the clusters are not only separated according to neoplastic state but also
according to tissue type, although we did not utilize any tissue specific infor-
mation in the subspace selection process—which is important for an unbiased
analysis of similarities and dissimilarities of cancers across different tissues.

In this investigation, using the limited resources available on the Web,we did
not find any sign of a type of cancer having distinct subtypes. This may, however,
be due to the fact that there are not enough libraries of any one type to detect
subtypes if they exist. Only when more SAGE libraries for cancerous samples
of the different tissue types are available will it be possible to investigate this
problem more thoroughly.

The SAGE data clearly contains errors from various sources, each of which
can be dealt with individually. The noise created by sequencing error can be
repaired by removing ultra-low frequency tags. The problems created by trun-
cated libraries can be reduced through missing value imputation. The discrep-
ancies in the sizes of the various libraries can be dealt with by normalization,
and the entire clustering structure can be enhanced and focused by using the
Wilcoxon test to select the most relevant tags.

It is also clear at this point that the SAGE method is a valid way to mea-
sure gene expression. An interesting point in general is that these libraries
were created in different laboratories of various research institutions across
North America, and yet the libraries clustered very consistently by tissue type,
source and neoplastic state. This is evidence that the SAGE method itself is
highly reproducible—an issue that has not been studied very much due to the
prohibitive expense of producing duplicated SAGE libraries.

Moreover, it can be seen that SAGE libraries cluster primarily by tissue type.
Brain and breast tissues appear to undergo further separation by neoplastic
state and tissue source, and ovarian and brain cancer cell lines appear to be
more similar to each other than to any other tissue types, while some libraries
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do not form into clusters at all. However, it is also clear that more analysis of
both the various tissues and the tags will be necessary.

3. FURTHER INVESTIGATIONS

The clustering structure shown in Figure 5 leads us to further questions about
the SAGE data. For instance, it would be of interest to explore which tags are
significantly different between the various clusters in order to determine what
is unique about each cluster. It is also of value to analyze the properties of
SAGE libraries made from different tissues, since some tissues formed into
more clusters than others, as well as to study those libraries that did not form
clusters or are part of a different cluster than expected. Below we describe our
findings on two further investigations.

3.1 Identification of Discriminating Genes

Earlier we demonstrated the use of the Wilcoxon test in selecting an appro-
priate subspace that would accentuate the differences between cancerous and
normal tissues. However, since the Wilcoxon test identifies attributes that are
significantly different between any two groups, it can also be used to highlight
the differences between different clusters.

For example, let us consider the ovarian cancer cell line and brain cancer
cell line clusters shown in Figure 5. It would be of interest to determine which
tags have different expression levels between the libraries in the brain and
ovarian cell line clusters and the normal brain and ovarian libraries (i.e. what
transcripts are common to these two cell lines and which discriminate them
from their normal counterparts). We expect the tags that passed the Wilcoxon
test to represent a subset of genes that allow us to distinguish between nor-
mal brain/ovary libraries and the brain/ovarian cancer cell line libraries. We
used the UniGene cluster “reliable” mapping provided on the SAGE website,
which maps SAGE tags to UniGene Ids that represent nonredundant sets of
gene-oriented sequence clusters in GenBank (a molecular sequence database
maintained at http://www.ncbi.nlm.nih.gov/). Using this mapping, 165 tags se-
lected by this test were mapped to 169 genes, with 7 tags mapping to 2 genes.
Upon examination, some of the genes were excluded from further literature re-
search due to inadequate information. For the remaining genes, we looked up
the entries in the OMIM database [Hamosh et al. 2002]. 88 of them did not map
to any entries, while 63 of the rest mapped to entries not related to cancer, and
18 mapped to entries related to cancer. Table I shows selected genes that we
have associated with a role in cancer through literature research. Columns one,
two, and three refer to UniGene cluster identification numbers, their descrip-
tion, and OMIM numbers, respectively. The fourth column summarizes the tag
counts for the two types of libraries. For instance, in the second entry, the row
<8,0,1,0> indicates that among the 9 normal libraries, 8 do not have the gene
expressed, and the remaining one has an expression level between 2 and 5.
The PubMed ID is included for a quick reference to the literature used in this
study. Furthermore, the last column indicates whether there is general consen-
sus within the literature. All the counts are normalized to the lowest value in

ACM Transactions on Information Systems, Vol. 23, No. 1, January 2005.



54 • J. Sander et al.

Table I. Information about Selected Genes

UniGene UniGene Cluster OMIM PubMed
Cluster Description Number Expression ID Lit.

Hs.179565 MCM3 Minichromosome
Maintenance Deficient 3

602693 N
C

0 1 ≥2 ≥5
4 2 3 0
1 1 5 7

11801723
10653597

√

Hs.334562 CDC2 Cell Division Cycle 2 116940 N
C

0 1 ≥2 ≥5
8 0 1 0
3 1 9 1

11836499
√

Hs.241257 LTBP1 Latent Transform.
Growth Factor Beta
Binding Protein 1

150390 N
C

0 1 ≥2 ≥5
6 2 1 0
2 0 7 5

11376559
√

Hs.239 FOXM1 Foxhead Box M1 602341 N
C

0 1 ≥2 ≥5
8 0 1 0
1 2 5 6

11682060
√

Hs.45231 LDOC1 Leucine Zipper,
down regulated by cancer 1
(AAGGTGGCAT)

n/a N
C

0 1 ≥2 ≥5
5 3 0 1
3 1 9 1

10403563 ×

the table. Due to space limitations, we include only five genes in the following
discussion.

The first entry is one of the discriminating genes identified—the minichro-
mosome maintenance deficient 3 (MCM3) gene. The MCM3 protein is involved
in eukaryotic genome replication and participates in the regulation of DNA du-
plication. This has been used as a cell growth and differentiation marker for
cancer prognosis. Although MCM3 is also expressed in nonproliferating cells
as described in the reference paper, only five of nine normal libraries in our
data expressed MCM3, whereas thirteen of fourteen cancer cell line libraries
expressed MCM3 with a high tag count.

The second entry is CDC2. Together with BRCA1, CDC2 is involved in mod-
ulating the cell cycle arrest process, specifically at the G2/M checkpoint [Yarden
et al. 2002]. In the OMIM entry ID116940, the CDC2 protein is proposed to be
involved in the resistance of drug-induced cell death in breast cancer due to its
role in the regulation of the cell division cycle. Of the fourteen brain/ovarian
cancer cell line libraries, eleven of them expressed CDC2, ten more than the
normal libraries.

For the third entry, in a study of ovarian cancer using the differential display
method, Higashi et al. [2001] identified the LTBP1 transcript as one of the most
highly differentially expressed transcripts in both ovarian cancer tissue and
cell line material. In other malignant tissues LTBP genes have been associated
with reduced expression [Oklu and Hesketh 2000] and elevated levels in their
surrounding extracellular matrix and stromal tissues. This helps confirm our
analysis that LTBP1 is a discriminating gene in resolving between ovarian
cancer, normal tissues and other malignancies as well as indicating that the
LTBP1 is also upregulated in brain cancers.

FOXM1 (previously known as Trident) is a transcription factor, expressed
in many cell types undergoing proliferation [Leung et al. [2001]. Its proposed
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function is within the process of cell cycle regulation through the control of
expression of Cyclin B1. Thirteen cancer cell line libraries (8/8 brain & 5/6
ovary) showed elevated levels of FOXM1 transcripts compared to only one of
the normal libraries. Furthermore, three libraries that expressed FOXM1 were
also found to express Cyclin B1 but not Cyclin D1, as documented by Leung
et al. [2001].

All of these are examples showing that our methodology seems to produce
relevant results. In fact, there is little in the literature that directly links the
genes to brain and ovarian cancer. Our approach serves to establish previously
undetermined linkages and commonalities between brain and ovarian cancer.

We note that not every gene we found agrees with the previously estab-
lished literature. For example LDOC1 (leucine zipper down regulated in can-
cer) was identified as being ubiquitously expressed in normal tissues and down-
regulated in cancer cell lines by Nagasaki et al. [1999]. Our examination points
to a different conclusion. In fact, analysis aside, LDOC1 is not ubiquitously
expressed in our normal brain/ovary SAGE libraries as claimed in the paper.
Instead of being down regulated in various tissues, our observed tag counts were
significantly higher in brain/ovary cancer cell line libraries when compared to
their normal counterparts. However, one aspect of the SAGE technology is that
different transcripts may produce similar tags. Therefore it is possible that this
particular tag also derives from a currently undiscovered transcript, although
the relatively high expression cell line material suggests that it would be rel-
atively well represented in existing resources of ESTs (Expressed Sequence
Tags) and cDNAs (complementary copy of an mRNA).

3.2 Gene Expression Classification

The analysis just presented provides a method for identifying genes that dis-
criminate one group of libraries from another. The SAGE libraries also present
an opportunity for us to consider a related question: whether different cancer-
ous tissues have different identities at the gene expression level. To evaluate
this question, we adopt a classification approach. For each case, we randomly
selected 50 to 90 percent of normal and cancerous libraries of a specific tis-
sue (e.g. brain) and labelled them as the training libraries. Then we randomly
picked a testing library from the remaining ones. The goal was to try to predict
whether the testing library is cancerous or normal. Due to the uneven number
of libraries in each state (i.e. normal/cancerous cell line/bulk) in the four tissues,
it was fairer just to classify the libraries according to their neoplastic state and
disregard whether they are bulk tissue or cell line. The dissimilarities between
the testing library and the training libraries were measured using correlation
coefficient, and the closest training library was identified. The testing library
was then predicted to be cancerous or normal, depending on whether the closest
training library was cancerous or normal. We repeated this procedure a hun-
dred times for different randomizations, and recorded the percentage of times
the correct prediction was made. The results are shown in Figure 6.

Both brain and breast cancer libraries have high prediction accuracy, sug-
gesting that these two cancer types have strong identities. Furthermore, the
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Fig. 6. Nearest Neighbour Classification with Random Sampling using correlation coefficient. The
x-axis of the graph shows the percentage of libraries used as training libraries. The y-axis shows
the average percent accuracy over a hundred runs.

more libraries used for training, the higher the accuracy. In contrast, both
prostate and ovarian cancer libraries have low accuracy. Specifically, the num-
ber of normal and cancerous prostate libraries are 4 and 10 respectively. In this
case, always predicting cancer would already give an accuracy of 71% (10 out
of 14). The curve in Figure 6 for prostate indicates that the training libraries
serve little purpose. This suggests that normal prostate and cancerous prostate
libraries are very similar to each other, and there seems to be a lack of a defini-
tive signature of prostate cancer. As a consequence, the increased number of
training libraries did not improve the performance, but indeed confused mat-
ters further. This may explain the inverse relationship between the percentage
of training libraries used and the accuracy of the prediction. A similar comment
applies to ovarian tissue.

3.3 Outliers

In general, the clustering structure shown in Figure 5 is quite strong, and there
are very few instances of mixed clusters or outliers. The majority of outliers are
libraries of tissue types of which there are only 2 instances, such as kidney
and skin tissue libraries. It is interesting to note that there are 7 colon tissue
libraries which were all closer to each other than to any other tissue type but did
not form a pronounced cluster. This may be because the colon tissue libraries
were not all from the same tissue source, or perhaps because colon tissues vary
more in gene expression from person to person than other tissues.

It is also interesting to note that the 6 libraries that were the furthest
from all other libraries in the data set were all truncated, which meant that
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there were no complete libraries available to perform missing tag imputation.
This is additional evidence that the amount of data in a library affects how it
clusters.

The only true cases of libraries of different tissues forming a single cluster are
the ovarian and brain cancer cell line cluster and the vascular and brain cluster.
In the former case, the two tissues form sub-clusters of a larger combined cluster
as previously discussed. In the latter case, the two vascular tissue libraries form
a small cluster with a brain cancer cell line library. However, with only three
libraries in total, the significance of this cluster is not clear. Because the brain
cancer library is not close to the other brain cancer libraries, it is possible that
this library represents a subtype of brain cancer that is similar to vascular
tissue rather than to ovarian cancer tissue.

4. CONCLUSION

In this article we proposed a method for clustering SAGE data to detect simi-
larities and dissimilarities between different types of cancer at the sub-cellular
level. We introduced four preprocessing steps to reduce errors, restore miss-
ing data, normalize the data, and select an appropriate subspace based on the
Wilcoxon test. After all of these steps were performed, the clustering algorithm
OPTICS produced a promising hierarchical clustering structure in which the
SAGE libraries are grouped according to tissue type and neoplastic state, show-
ing a possible relationship between brain and ovarian cancer.

We have shown that the SAGE data appears to be highly reproducible, since
the data was produced in various different laboratories but still displays a con-
sistent clustering structure, when appropriate preprocessing steps were ap-
plied. We have also shown that the Wilcoxon test can be used to identify dis-
criminating tags. Furthermore, we have shown that different cancerous tissues
have different degrees of identity at the gene expression level. This may suggest
that the strong-identity ones, like brain and breast, may be good candidates for
applying the kind of discriminating gene identification described here rather
than the weak-identity ones.

The dissimilarities between the libraries in the subgroups of several tissue
types were studied. Brain tissues were found to be completely separated by
subgroup—every brain tissue library of every subgroup was found to be closest
to other brain libraries of the same subgroup. One breast cancer bulk tissue
library was found to be closer to a normal breast bulk tissue library than to other
breast cancer tissue libraries, perhaps because of contamination by surrounding
cells in the sample. Prostate tissue library subgroups were all close to each
other, suggesting that gene expression in cancerous prostate tissues is not very
different from that in normal tissues. Normal ovarian cell line tissues were
found to be close to ovarian cancer cell line tissues, which may mean that normal
cell lines may be used as a model for cancer in ovarian tissue.

This is, however, preliminary work in several respects. Further research
is necessary to investigate the significance of our findings, and more data is
required before subtypes of cancers can be discovered. We based our analysis on
88 SAGE libraries, but more libraries are added over time. However, SAGE data
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is expensive to produce and it may take some time before a large enough data set
is available. In addition, more aggressive methods for subspace selection could
be explored to reveal more subtle similarities between different cancers and
dissimilarities within a specific cancer. Nevertheless, producing more SAGE
data is important because, as our experiments indicate, it contains valuable
information that is not available elsewhere.

The main purpose of this analysis was to identify cancer types and subtypes,
which is why we focused on clustering only the SAGE libraries. In the future
it may also be interesting to cluster the SAGE tags as well. Understanding the
clustering structure of the tags will not be trivial, however, because of the large
number of tags and the fact that the majority of tags have not yet been mapped
to a gene.
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