
To Do or Not To Do: The Dilemma of Disclosing
Anonymized Data

Laks V.S. Lakshmanan, Raymond T. Ng, Ganesh Ramesh
University of British Columbia

{laks,rng,ramesh}@cs.ubc.ca

ABSTRACT
Decision makers of companies often face the dilemma of whether
to release data for knowledge discovery, vis a vis the risk of disclos-
ing proprietary or sensitive information. While there are various
“sanitization” methods, in this paper we focus on anonymization,
given its widespread use in practice. We give due diligence to the
question of “just how safe the anonymized data is”, in terms of
protecting the true identities of the data objects. We consider
both the scenarios when the hacker has no information, and more
realistically, when the hacker may have partial information about
items in the domain. We conduct our analyses in the context of
frequent set mining. We propose to capture the prior knowledge
of the hacker by means of a belief function, where an educated
guess of the frequency of each item is assumed. For various classes
of belief functions, which correspond to different degrees of prior
knowledge, we derive formulas for computing the expected num-
ber of “cracks”. While obtaining the exact values for the more
general situations is computationally hard, we propose a heuris-
tic called the O-estimate. It is easy to compute, and is shown to
be accurate empirically with real benchmark datasets. Finally,
based on the O-estimates, we propose a recipe for the decision
makers to resolve their dilemma.

1. INTRODUCTION
Privacy-preserving data mining has attracted a lot of at-

tention in recent years. The primary objective is to strike a
balance between two opposing forces: the urge to mine data
to gain further insights and knowledge, versus the respon-
sibility to protect the privacy and identities of individuals
(e.g., patients, travelers). As well, these two forces manifest
themselves in similar ways in business situations. Decision
makers of companies often face the dilemma of whether to
release data for knowledge discovery, given the risk inherent
in disclosing proprietary/sensitive information (e.g., identi-
ties of the better-selling products) to the public, particularly
to potential competitors. Consider the following scenarios.

Mining as a service: A company, with insufficient
expertise in data mining, wants to hire a data min-
ing service provider to mine its data. While there is
legal protection (e.g., non-disclosure agreements), the
company still legitimately worries about its data being
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leaked out somehow, and such leakages are often hard
to detect.

Mining for the common good: A company may
want to participate in a consortium, which involves
sharing of data. The motivation of pooling data to-
gether is to gain in scale and in diversity (e.g., ge-
ographical variations, demographic differences). The
dilemma is that partners of the consortium may al-
ready be, or one day become, competitors, or work
with competitors.

One common approach to handling these situations is
to release transformed data; and amongst the well-known
transformation techniques, anonymization is arguably the
most common. That is, if the objects in the domain are
originally identified by their social security number, product
number, etc., these objects are now identified by a generated
number, typically as simple as a positive integer. Compared
with other transformation techniques, anonymization is sim-
ple to carry out, as mapping objects back and forth is easy.
Another advantage of anonymization is that it does not per-
turb data characteristics. For both the above scenarios,
changing the data characteristics may affect the outcome
too much that it defeats the original purpose of releasing
the data. Note that there are alternatives and more so-
phisticated techniques (e.g. k-anonymization); and we are
not recommending that anonymization be used to replace
those more sophisticated approaches. Our study here is sim-
ply based on the observation that anonymization is already
widely used in practice. One prime example is clinical trial
studies for new drugs in the medical and pharmaceutical
domain. Even though the US Food and Drug Administra-
tion guidelines are well-known to be strict, anonymization
(or de-identification) is still considered adequate in the clin-
ical trial circles for protecting the privacy of the patients
participating in the studies.

The immediate question, however, is: Just how safe is
the anonymized data? where “safe” is interpreted as protec-
tion of the identities of the objects. Hereafter, we use the
term data “owner” to refer to the party that owns the orig-
inal data, and the term data “hacker” to refer to the party
that tries to illegally reveal the true identities of anonymized
objects. We use the term “cracks” to refer to the objects
whose identities are revealed by the hacker. An answer to
the above question of safety is complicated by an often over-
looked issue: How much partial information does the hacker
have? The assumption that there is no partial information
out there may be unrealistic in this internet era. Further-
more, as illustrated in the two scenarios above, a hacker



may be from a competitor or a rival company. The hacker
may use his/her knowledge from his/her own data or data
from similar sources, to infer and gain knowledge about the
anonymized data. It has been recognized that incorporating
partial knowledge in analyzing security is an open problem.
For instance, Yang and Li consider prior knowledge captured
in functional dependencies in secure XML publishing [27].
Thus, the safety question becomes: Just how safe is the
anonymized data in the presence of partial information?

One source of partial information is when the attacker has
access to similar data. In this paper, we develop a frame-
work to answer the safety question by investigating various
abstractions of similarity. Using frequent set mining as an
illustrative example, we model the attacker’s partial infor-
mation in the form of a belief function which represents the
attacker’s educated guess about the frequency of each item
from such similar data. For each of these abstractions, we
explore how to determine the percentage of cracks when the
attacker has access to the anonymized database and partial
information. More specifically:
1. We first analyze two extremes of similarity (Section 3):
When the attacker has access to no data and when the at-
tacker has access to “almost” identical data. This is cap-
tured in the form of ignorant and compliant point-valued
belief functions respectively. For both cases, we present for-
mulas for determining the exact percentage of cracks and
observe that even in the presence of identical data, the dis-
tribution itself may provide some degree of protection.
2. While the extreme cases may be highly unlikely to occur
in practice, their analysis, nevertheless, is useful in practi-
cal scenarios. We model the third abstraction of similarity
where the partial information is captured in a compliant
interval(-valued) belief function (Section 4), which specifies
a range of frequency values for each item. Each range is
assumed to contain the true frequency (hence compliant).
This abstraction models the case when the attacker has in-
formation about the true frequency of every item but is not
sure about its exact value (hence a range). While this ab-
straction of similarity is more general than the extremes, it
is still conservative as the attacker may not have compliant
information about all the items in the domain. The fourth
abstraction of similarity captures this most general notion of
the attacker’s partial information: α-compliant belief func-
tions where the belief function only guesses the right ranges
for a fraction α of items (0 ≤ α ≤ 1).
3. Not surprisingly, determining the exact percentage of
cracks for interval belief functions turns out to be a hard
problem, and even known estimation algorithms have too
high a complexity to be practical. For specific structures it
is possible to obtain exact formulas for the expected num-
ber of cracks and for one such special case of interval belief
functions whose structure resemble a chain, we derive exact
formulas for computing the percentage of cracks. To over-
come the complexity of estimating the percentage of cracks
for a general interval belief function, we develop a heuristic,
which we call the O-estimate(Section 5). We show that the
O-estiamte is practically accurate for the various similarity
abstractions, by evaluating its accuracy through a system-
atic set of experiments on benchmark data(Section 7).
4. Consequently, using these tools and similarity abstrac-
tions, we propose a heuristic recipe, using which a data
owner can determine the risk of releasing anonymized data
(Section 6). We show the effectiveness of this recipe (Sec-

tion 7.3) by studying the effect of compliancy on the per-
centage of items that are cracked, which is used by the data
owner to resolve the dilemma of releasing the anonymized
data. We also demonstrate how a data owner can simluate
the attacker’s prior knowledge by building belief functions
from samples of the original dataset (Section 7.4).
5. Finally, in Section 8, we make observations about how
the proposed analyses and O-estimates can be generalized
from frequent set mining to other data mining tasks.

1.1 Related Work
A majority of work in disclosure limitation like [17, 11, 9]

focus on applying statistical disclosure limitation methods
for categorical and microarray datasets. All these methods
use techniques like cell suppression, data swapping, round-
ing, sampling and generation of synthetic data as a means
of achieving statistical disclosure control. While limiting
disclosure, they may perturb the characteristics of the orig-
inal dataset. In any event, this paper does not necessarily
advocate anonymization as the best method to limit disclo-
sure. Rather, based on the observation that anonymization
is one of the most common approaches, our work gives due
diligence to the analysis of the risk of releasing anonymized
data. Furthermore, our analysis addresses the often over-
looked issue of considering whatever partial information that
the hacker may possess.

Privacy has been studied in the context of association rule
mining [26, 10, 15]. In [10], Evfimievski et al. propose a
framework for mining association rules in which the data
items in transactions are randomized to preserve privacy of
individual transactions. They analyze the nature of privacy
breaches caused by using the association rules discovered
from this database and propose randomization operators to
limit such breaches. The problem of hiding association rules
by transforming the input database is studied by Verykios
et al. in [26]. The authors are interested in modifying the
input database such that a given set of associations is hid-
den in the transformed database. Techniques like removing
items from transactions, adding new items to transactions
are used. While the problem of transforming data shares
some commonalities with our work, they modify the fre-
quency of items in the original data. Furthermore, their
studies do not deal with the possible presence of prior knowl-
edge possessed by the hacker.

In [4], Agrawal and Srikant propose an approach for pri-
vacy preserving classification that is based on mining on per-
turbed data, with the perturbed distribution closely match-
ing the real distribution. Furthermore, Agrawal and Aggar-
wal in [5] discuss an expectation maximization algorithm
which provides robust estimates of the original distribution
based on perturbation and provides some interesting results
on the relative effectiveness of different perturbing distri-
butions in terms of privacy. In [12], Iyengar uses the ap-
proaches of suppression and generalizations to satisfy pri-
vacy constraints. The tradeoff between privacy and infor-
mation loss in the specific context of data usage is consid-
ered, and the search for the optimal tradeoff is considered
as an optimization problem for which a genetic algorithm
framework is used to search for a solution. In [2], Aggarwal
and Yu use an approach based on condensation groups to
model indistinguishability of data records and use it to cre-
ate anonymized data which has similar characteristics to the
original multidimensional dataset and apply it to the clas-



sification problem. Finally, the k-anonymity model studied
in [22, 23, 3, 19] uses domain generalization hierarchies in
order to transform and replace each record value with a cor-
responding generalized value. While this model is similar in
spirit to our notion of anonymization, it perturbs the data
(in the simplest case, making more than one item indistin-
guishable from each other), thus making reconstruction of
patterns difficult. In sum, all these studies focus on perturb-
ing the data so that the results of data mining the perturbed
data remain similar to the original data. Our work here is
very different in that it gives an analysis of the risk of re-
leasing anonymized data.

The security problem in statistical databases deals with
protecting the database from returning information about
an individual or answering a sequence of queries from which
individual information can be deduced, where the statis-
tical databases allow only queries that retrieve statistical
information (like sum, average, median) of certain subsets
of records. The various approaches used by the security
control methods are categorized in the survey by Adam
and Wortmann [1]. An evaluation of three data pertur-
bation methods to protect the confidentiality of numerical
attributes is presented in [18].

2. ANONYMIZATION, BELIEF FUNCTIONS
2.1 Anonymization

The original domain is a non-empty universe of items I.
For the sequel, we assume |I | = n. A database D is a
sequence of transactions 〈T1, . . . , Tm〉. Each transaction is a
non-empty subset of I. As in [6], the frequency of an item
x ∈ I is the fraction of transactions in D that contain x.

Let J be an anonymized domain of items such that |J | =
|I | and J ∩I = ∅. An anonymization mapping is a bijection
from I to J . Transactions are anonymized by replacing each
item in the transaction with its anonymized item. Databases
are anonymized by anonymizing each transaction. Note that
the anonymization mapping is applied uniformly across all
the transactions in the database. Hence, if 1 is anonymized
to 1 ′,this happens in every transaction in the database. Fig-
ure 1 shows a simple example, referred to hereafter as the
BigMart example. For the rest of the paper, the primed
item, x ′ ∈ J , will be used to denote the anonymized item
corresponding to x ∈ I.

1        {1’,2’,3’}
2        {1,2,3,4}
3        {4,6}
4        {3,4,5,6}
5        {5,6}
6        {6}
7        {1,2} 
8        {1,3,4} 
9        {1,3,5}

10        {2,4,6}

TID   Transaction

Big Mart’s Database

I = {1,2,3,4,5,6}

After Anonymization

J = {1’,2’,3’,4’,5’,6’}

TID   Transaction

2        {1’,2’,3’,4’}
3        {4’,6’}
4        {3’,4’,5’,6’}
5        {5’,6’}
6        {6’}
7        {1’,2’}
8        {1’,3’,4’}
9        {1’,3’,5’}

10        {2’,4’,6’}

1        {1,2,3}

Figure 1: Example Anonymized Database

2.2 Belief Functions
In this paper, we assume that the hacker knows the do-

main I and captures this prior knowledge about the domain
in a belief function, β. A belief function maps each item x in

I to an interval [l, r], modeling the belief that the frequency
of x in the database is in the range [l, r] where 0 ≤ l ≤ r ≤ 1.

Two special belief functions are considered which repre-
sent extremes in the hacker’s prior belief. When a hacker
has no knowledge of the frequency of any item in I, each
item in I maps to [0, 1]. In this case, the hacker is ignorant
of the frequency of any item in I and the belief function is
called an ignorant belief function.

The other extreme is when the hacker has exact knowledge
of the frequency of every item in I, with each interval [l, r]
essentially becoming a point value in the interval [0, 1]. This
belief function is called a point-valued belief function. A
belief function is called an interval belief function at least
one item’s belief interval is a true range, i.e., l < r.

A belief function is compliant, if for every item x ∈ I,
the range [l, r] contains the true frequency of x. A belief
function is α-compliant if only a fraction α (0 ≤ α ≤ 1) of
items satisfy the requirement of true frequency containment.
For simplicity, whenever α = 1, we simply refer the belief
function as compliant.

Figure 2 shows four belief functions f, g, h and k over Big
Mart’s domain: f is a compliant point-valued belief func-
tion; g is an ignorant (and compliant) belief function; h is
a compliant interval belief function; and k is 0.5-compliant,
as it guesses wrong on the first three items.

Belief Functions f, g, h, k:

k(1) = [0.1,0.4]
k(2) = 0.5
k(3) = [0.1,0.3]
k(4) = [0.4,0.6]

k(6) = 0.5
k(5) = [0.1,0.4]

Interval

0.5−Compliant

h(1) = [0,1]
h(2) = [0.4,0.5]
h(3) = 0.5
h(4) = [0.4,0.6]

h(6) = 0.5
h(5) = [0.1,0.4]

Compliant Interval

g(1) = [0,1]
g(2) = [0,1]
g(3) = [0,1]
g(4) = [0,1]
g(5) = [0,1]
g(6) = [0,1]

Ignorant

f(1) = 0.5
f(2) = 0.4
f(3) = 0.5
f(4) = 0.5
f(5) = 0.3
f(6) = 0.5

Compliant

Point−Valued

Figure 2: Examples of Belief Functions

2.3 Inference and Consistency Assumptions
A hacker uses a crack mapping, C : J → I, to iden-

tify anonymized items. We assume the hacker only uses 1-1
crack mappings, i.e., (s)he assigns exactly one item to each
anonymized item. An item x ∈ I is said to be cracked by C

whenever the mapping correctly maps the anonymized item
x ′ to x. The question here is which crack mappings are used
by the hacker. We assume that the hacker uses his/her be-
lief function to derive crack mappings. Specifically, let x ′

be an anonymized item and let F(x ′) be its observed fre-
quency in the database. Then, x ′ is mapped by the hacker
to only those items in I whose belief interval contains F(x ′).
Such mappings are called consistent mappings, as they are
consistent with the prior knowledge a hacker has about I.
Henceforth, mapping always means a consistent mapping.

Consider for example the belief function h shown in Fig-
ure 2. By analyzing the anonymized data, the hacker will
surely find out the frequencies of 1 ′, 2 ′, 3 ′, 4 ′, 5 ′ and 6 ′

are respectively 0.5, 0.4, 0.5, 0.5, 0.3 and 0.5 (i.e., specified
precisely by the compliant, point-valued belief function f).
What can be the true identity of 1 ′ then? To be consistent
with the belief function h, 1 ′ can be mapped to 1, 2, 3, 4

and 6; h(5) = [0.1, 0.4] is the only range not containing 0.5.
Similarly, the observed frequency of 2 ′ is 0.4, and 2 ′ can be
mapped to 1, 2, 4 and 5.

Given a belief function and an anonymized database, the
space of all consistent crack mappings can be represented by
a bipartite graph G = (J ∪ I, E), where each mapping is a



perfect matching in G. The edge (x ′, y) in G denotes the fact
that a mapping used by a hacker can map the anonymized
item x ′ to the item y ∈ I. Thus, for the ignorant belief
function, we have a complete bipartite graph. Note that, if
a belief function is compliant on item x, then the edge (x ′, x)
is present in the bipartite graph.

Figure 3(a) shows the bipartite graphs corresponding to
the belief functions f and h in Figure 2. For the latter, as
discussed in the previous paragraph, 1’ is connected to 1, 2,
3, 4 and 6; 2’ is connected to 1, 2, 4 and 5; and so on.

1

2

3

4

5

6

1’

2’

3’

4’

5’

6’

1

2

3

4

5

6

1’

2’

3’

4’

5’

6’

(a) Space of Mappings
for Items

2

5

1

3

4

6

2’

5’

1’

3’

4’

6’

3

5

2

4

1

6

1’

3’

4’

6’

2’

5’

(b) Space of Mappings
for Frequency Groups

Figure 3: Space of Consistent Mappings for f, h

Figure 3(b) shows an alternative presentation of the map-
pings of Figure 3(a) by grouping the items in the anonymized
domain and the original domain and viewing mappings in
terms of these groups. The anonymized items can be grouped
based on their observed frequencies. On the other hand, the
items in the original domain can be grouped based on the
anonymized items that can map to them. Specifically, items
x and y in I belong to the same group if {w ′|(w ′, x) ∈ G} =
{w ′|(w ′, y) ∈ G}, where G denotes the bipartite graph. Con-
sider the group mapping corresponding to the belief function
h (of figure 2). Even though items 2 and 4 have different
belief intervals, they belong to the same group as the same
set of anonymized items can map to these two items.

Note that given a belief function and a corresponding bi-
partite graph, there may not exist a perfect matching. As
a simple example, let the original domain be {1, 2} and the
corresponding anonymized domain be {1’, 2’}. The bipar-
tite graph may map both 1’ and 2’ to 2, with no anonymized
item mapped to 1. Throughout our analysis, situations like
this are dealt with using α-compliancy (Section 5.3). Until
then, we consider only compliant belief functions.

3. ANALYSIS OF THE TWO EXTREMES
To decide whether to release the anonymized data, the

data owner needs to assess the risk of disclosure. Given the
bipartite graph corresponding to the belief function, there
are many possible crack mappings, giving rise to different
numbers of cracks. Throughout this paper, we assume that
each consistent crack mapping is equally likely. (In practice,
the hacker may use additional prior knowledge to favor one
crack mapping over another. We consider this beyond the
scope of this work.) Hence, the risk of disclosure can be
reasonably measured by the expected percentage or number
of cracks. In this section, we provide formulas for comput-
ing the expected number of cracks in the presence of prior
knowledge modeled by the ignorant belief function and the
compliant point-valued belief functions. In the next section,
the analysis will be generalized to interval belief functions.

3.1 Ignorant Belief Function
Let us suppose that the hacker is ignorant of the frequen-

cies of items in I. Hence, a hacker can map an anonymized
item to any item in I and the space of mappings is a com-
plete bipartite graph. The expected number of cracks in this
case is the expected number of cracks in any mapping in this
complete bipartite graph. The following lemma shows that
the expected number of cracks in a mapping for a complete
bipartite graph is 1.

Lemma 1. Let G = (J
S
I, E) be a complete bipartite

graph. Let X be a random variable that represents the num-
ber of cracks in a mapping obtained from G. Then the ex-
pected number of cracks is E(X) = 1.

Proof Sketch: Let Xi ′ be a random variable associated
with any i ′ ∈ J which is 1 when i ′ maps to the correct item
i ∈ I and 0 otherwise. The probability that anonymized
item i ′ maps to i is 1

n
, where |I | = |J | = n. The ex-

pected value E(Xi ′) is thus 1
n

. The random variable X =∑
i ′∈J Xi ′ . Thus, E(X) = E(

∑
i ′∈J Xi ′) =

∑
i∈J E(Xi ′) =

n× 1
n

= 1.

The implication of the lemma is that, as |I | = n gets
bigger, the expected fraction of cracks is only 1

n
. Thus,

when the hacker has absolutely no prior knowledge of the
domain, anonymization is indeed a good option for the data
owner, especially when the domain is large.

The above lemma can be generalized to a subset of items
of interest, i.e., I1 ⊂ I. For example, the data owner may
only be concerned with the identities of the frequent items,
or the items with the highest profit margin. Let us assume
that |I1| = n1 and the corresponding set of anonymized
items is J1 ⊂ J . Let the random variables Xi ′ and X denote
the same as before. The probability of an anonymized item
i ′ ∈ J getting mapped correctly to its original item is still
1
n

. However, we are now interested only in I1. Therefore, X

is given by
∑

i ′∈J1
Xi ′ , rather than the sum of all the Xi ′ .

This argument gives rise to the following lemma.

Lemma 2. Let G = (J
S
I, E) be a complete bipartite

graph. Let I1 ⊂ I be a set of items of interest in the original
domain and let |I1| = n1. Let X be a random variable that
represents the number of cracks of items in I1 in a mapping
obtained from G. Then the expected number of interested
items being cracked is E(X) = n1

n
.

3.2 Compliant Point-Valued Belief Function
The assumption that the hacker is completely ignorant

may be unrealistic. The data owner may in fact be com-
pletely “paranoid”, and may conduct a disclosure risk anal-
ysis assuming that the hacker correctly guesses the frequency
of each item. Note that this extreme case may be unrealis-
tically conservative. Nonetheless, the analysis may lead to
interesting observations.

This extreme is modeled by the compliant, point-valued
belief function, i.e., the observed set of frequencies of items
in the anonymized database and the belief frequencies in the
prior knowledge, match exactly. The space of mappings in
this case, gets partitioned into frequency groups, as shown
in Figure 3(b). The three groups {1 ′, 3 ′, 4 ′, 6 ′}, {2 ′} and {5 ′}

correspond to the frequencies 0.5, 0.4 and 0.3 respectively.
When the group size is 1, the hacker comes up with the



cracks directly (e.g., 2 ′ mapped to 2, and 5 ′ mapped to
5). However, with the group consisting of the four elements
1 ′, 3 ′, 4 ′, 6 ′, any permutation of the original items 1, 3, 4, 6

is a mapping. This is because the prior knowledge does not
enable further discrimination between the items of the same
group. Hence, the mappings within a group are similar to
the case of ignorant belief functions. Mappings within each
group are also independent of the mappings within other
groups, thus permitting group-wise analysis for expected
number of cracks. The result can be summed up across
all the groups to obtain the expected number of cracks in
the final mapping. We thus have the following result that
gives the expected number of cracks for the compliant point-
valued belief function.

Lemma 3. Let g be the number of distinct observed fre-
quencies of the anonymized items. Let G = (J

S
I, E) be a

bipartite graph modeling the space of mappings for the com-
pliant point-valued belief function. Let X be a random vari-
able denoting the number of cracks in a mapping obtained
from G. Then the expected number of cracks is E(X) = g.

Proof Sketch: If there are g distinct observed frequencies,
then the compliant point-valued belief frequencies match
these g observed frequencies. Hence, the bipartite graph
contain g components. Within each component is a com-
plete bipartite subgraph. Thus, by Lemma 1, the expected
number of cracks is 1 per component. Hence E(X) = g.

The above lemma says that even if the hacker has com-
plete knowledge of the frequencies, the expected number of
cracks g does not necessarily equal n. In fact, if there are a
lot of items with equal frequencies, g can be much less than
n. In a sense, the items in each group provide camouflage to
each other so that their true identities are better protected.

Suppose that the data owner is concerned about the iden-
tities of only a subset I1 ⊂ I. Then the results obtained
thus far can be used to compute the expected number of
cracks as follows. Lemma 2 can be used on each frequency
group independently to give the expected number of cracks.

Lemma 4. Let g be the number of distinct observed fre-
quencies of the anonymized items. Let n1, . . . , ng be the
size of each of the frequency groups. Let c1, . . . , cg be the
number of items the data owner is interested in, for each of
the frequency groups. Let G = (J ∪ I, E) be the bipartite
graph representing the space of all mappings and let X be
a random variable representing the number of cracks of the
items of interest in a mapping obtained from G. Then, the
expected number of interested items being cracked is E(X) =∑g

i=1
ci
ni

.

4. COMPLIANT INTERVAL BELIEF FUNC-
TIONS

The compliant point-valued belief function analyzed above
represents the worst case from the data owner’s perspective.
In this section, we analyze more realistic situations when
the hacker’s belief function is a compliant interval function.
Depending on prior knowledge, a hacker may associate arbi-
trary intervals with various items in the domain. For exam-
ple, based on prior experience, the hacker may believe that
item x has a frequency in the range [0.4, 0.6], item y has a
frequency in [0.7, 0.8] and having no knowledge about the

frequency of z, the hacker may associate the belief interval
[0, 1] with z. The belief function h in figure 2 is an example
of an interval belief function.

4.1 A Direct Method
A direct method to compute the expected number of cracks

is as follows. The size of the space of mappings is precisely
the number of perfect matchings in the bipartite graph G,
which is given by the permanent of the adjacency matrix
AG of G. The number of ways in which k out of the n items
in I are cracked is computed as follows. We can choose
the k cracks from n in

`
n
k

´
ways. Once the k items are

picked, remove these items and their primed counterparts
from G. Also remove the edges corresponding to cracks from
the other n − k items and compute the number of perfect
matchings in the remaining graph.

The exact expression for the expected value in terms of
permanents is computed as follows. Let Ik denote the set of
all subsets of size k of I and let Π(Ag) denote the permanent
of the matrix AG. The probability of obtaining k cracks is
given by:

P(X = k) =

∑
S∈Ik Π(AG(S))

Π(AG)

where, for a given S ⊂ Ik, G(S) is the graph obtained by
removing the edges (y ′, y) for all y ∈ I and the nodes x

and x ′ and their incident edges for each x ∈ S from G. The
expected number of cracks is thus:

E(X) =
∑n

k=0 k ∗ P(X = k) =
∑n

k=0 k ∗
∑

S∈Ik

Π(AG(S))

Π(AG)
.

While the above formula is exact, the problem is that com-
puting the permanent is known to be very difficult – more
precisely, a #P-complete problem [25]. Various approxima-
tions have been developed for computing permanents [14,
21]. The state of the art is the polynomial-time random-
ized approximation scheme presented in [13]. However, the
running time is of the order of O(n22)! Thus, for arbitrary
interval belief functions and realistic domain sizes, it is not
feasible to use the direct approach to compute the expected
number of cracks. However, we explore special cases for
which exact or approximate formulae are possible.

4.2 Chain Belief Functions
Consider the example shown in figure 4(a). The example

gives a scenario where the domain has 8 items. There are
two distinct frequency groups in the database, F1 and F2,
corresponding to the frequencies 0.3 and 0.7. F1 contains 5

items while F2 contains 3 items. The hacker’s belief function
is that 3 items have the frequency 0.3, 2 have frequency 0.7

and the frequency of the remaining 3 items lie in the interval
[0.25, 0.75], and is assumed to be fully compliant. The space
of crack functions is precisely the group structure which is
shown in figure 4(a). The question here is: what is the
expected number of cracks in such a case?

Let us consider an item in group E1. The probability of
this item getting mapped to its corresponding anonymized
item in F1 is 1

5
as this item can only map to items in F1. For

an item in group E2, this probability is 1
3
. The most com-

plex case corresponds to items in the overlapped group S1.
An item in this group can be mapped to items in either F1 or
F2. Suppose the corresponding anonymized item x ′ belongs
to F1. Then, the probability that x gets mapped to x ′ is the
product of the probability that x gets mapped to group F1

and the probability that within this group, x gets mapped
to x ′. This is given by 2

3
× 1

5
. A similar argument holds for
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Figure 4: Chains - Size 2 and k

items in S1 whose corresponding anonymized item is in F2

and the probability for such items is given by 1
3
× 1

3
. Let S1

1

be the set of items in S1 whose corresponding anonymized
item belongs to F1 and let S2

1 be the remaining set of items
that map to group F2. The expected number of cracks is
thus given by:

E(X) =
∑

x∈E1

1
5 +

∑
x∈E2

1
3 +

∑
x∈S1

1

2
3 ×

1
5 +

∑
x∈S2

1

1
3 ×

1
3 = 74

45 .

Hence, for this example, we can expect 74
45

or 1.644 cracks
on average.

Let us formalize the situation depicted in the above exam-
ple. Consider the set of frequency groups based on the ob-
served frequencies of the anonymized items arranged in the
increasing order of frequency. Let there be k groups with
frequencies f1 < f2 < · · · < fk−1 < fk. Let ni, 1 ≤ i ≤ k

be the number of items in the ith group. The original items
can be partitioned into belief groups based on their belief
intervals. Two items x and y in I belong to the same belief
group if they can map to the same set of frequency groups
(based on their belief intervals). The interval belief function
is said to form a chain whenever every belief group maps
to either exactly one frequency group or two successive fre-
quency groups. A belief group is called exclusive if it can
map to exactly one frequency group and is called shared oth-
erwise. Since there are k frequency groups of anonymized
items, the chain is said to be of length k. A chain of length
k is shown in figure 4(b).

Lemma 5. Let there be two distinct observed frequencies
in the anonymized database and let n1 and n2 be the size
of the frequency groups. Let the interval belief function be a
chain of length 2 where the shared belief group is of size s1

and the exclusive groups are of sizes e1 and e2 respectively,
such that e1 + e2 + s1 = n1 + n2. Let X denote a ran-
dom variable that gives the number of cracks in a mapping
that is consistent with the interval belief function. Then, the
expected number of cracks is:

E(X) = e1
n1

+ e2
n2

+ (n1 − e1)× (n1−e1)
s1

× 1
n1

+(n2 − e2)× (n2−e2)
s1

× 1
n2

.

Proof Sketch: The probability that an item in the exclu-
sive group is mapped correctly to its anonymized item is

given by 1
n1

or 1
n2

depending on the two exclusive groups.

An item in the shared group correctly maps either to fre-
quency group 1 or frequency group 2. The probability of an

item correctly mapping to its group is given by (n1−e1)
s1

or
(n2−e2)

s1
depending on the frequency group. Once it maps to

its group correctly, the probability of mapping it correctly
to an anonymized item is 1

n1
or 1

n2
. The number of items in

the shared group that map to the frequency group 1 (resply.
2) is n1 − e1 (resply. n2 − e2). This explains the last two
terms of the summation. The first two terms simply give the
expected number of cracks for the two exclusive groups.

We now generalize the above argument to derive the ex-
pected number of cracks for a chain of length k. For a chain
of length k, there are k frequency groups in the anonymized
database. There are k exclusive belief groups and k − 1

shared belief groups. Let them be as shown in figure 4(b).
We further assume that frequency group i is the frequency
group containing ni items, for 1 ≤ i ≤ k. For an item in
an exclusive group containing ei items, the probability of
the item mapping to its correct anonymized item is given
by 1

ni
. Now, consider the shared group of si items. An item

in this group can correctly map to an item in frequency
group i or frequency group i + 1. The number of items that
map correctly to frequency group i (to i + 1) is given by∑i

j=1(nj − ej − sj−1) (resply.
∑i

j=1(sj + ej − nj)). Using
the same argument as for chains of length 2, the probabil-
ity that an item in a shared group maps correctly to its
anonymized item is given by the product of the probability
of mapping it correctly to that group and the probability
that it maps correctly within that group. We thus have the
following formula for a chain of length k.

Lemma 6. Let there be k distinct observed frequencies in
the anonymized database and let n1, . . . , nk be the size of
the frequency groups. Let the interval belief function be a
chain of length k where the shared belief groups are of sizes
s1, . . . , sk−1 respectively and the exclusive groups are of sizes
e1, . . . , ek. Let X denote a random variable that gives the
number of cracks in a mapping that is consistent with the
interval belief function. The expected number of cracks is:

E(X) =
∑k

j=1
ej

nj
+

∑k−1
i=1

[
∑i

j=1(nj−ej−sj−1)]2

sini

+
∑k−1

i=1

[
∑i

j=1(sj+ej−nj)]2

sini+1

5. O-ESTIMATES FOR GENERAL INTER-
VAL BELIEF FUNCTIONS

So far we have derived an exact formula for computing
the expected number of cracks in a chain of arbitrary length.
Unfortunately, a general belief function modeling prior knowl-
edge need not always form a chain. Thus, in this section,
we deviate from exactness and turn to approximation. We
propose a heuristic algorithm that applies to any general
interval function.

5.1 The O-estimate Heuristic
Recall from the proof sketches of the previous lemmas that

we repeatedly apply a well-known result from statistics. Let
X and Y be two random variables. Then it is the case that
E(aX+bY) = aE(X)+bE(Y). This identity does not require
that X and Y be independent. Thus, regardless of whether
the bipartite graph forms a chain or not, we can still analyze



Algorithm O-estimate
Input: β - interval belief function over I

D - Anonymized Database over J
1. Compute frequency of single items in J from D.
2. Compute the frequency groups g1, . . . , gk.

Let n1, . . . , nk be their sizes.
Let f1 < f2 · · · < fk be their frequencies.

3. Initialize Oest = 0
4. For each x ∈ I

a. Compute nx, the number of anonymized
items that can map to x.

b. Oest = Oest + 1
nx

5. return Oest;

Figure 5: The O-estimate Heuristic

the expected number of cracks by examining each item in
an isolated fashion.

Let β be an interval belief function and let G be the bipar-
tite graph representing the space of all mappings. For each
x ∈ I, let Ox denote the outdegree of the node x in G. The
outdegree of x basically denotes the number of anonymized
items that can be mapped to it. Note that the probability
that the anonymized item x ′ correctly maps to x is given by

1
Ox

(under the compliancy assumption, this edge is always

guaranteed to exist in the space of mappings). Thus, the ex-
pected number of cracks can be estimated by summing this
probability across all the items in I. We call this heuris-
tic the O-estimate (denoted OE(β,D)) and it is defined as∑

x∈I
1

Ox
where Ox is the outdegree of the node x in G.

Figure 5 outlines a procedure to compute the O-estimate,
given a belief function and a database. Step 1 takes |D| time
to compute the frequency of anonymized items by making
a single database pass. Let n be the number of items in
I (resply. J ). There can be k = n frequency groups as
each item can have a distinct frequency. Step 2 thus takes
O(n log n) time. Step 4 then counts for each item x, the
number of anonymized items that can be mapped to it. This
step takes O(n2) time when implemented naively. But by
using frequency groups and prefix sums of the counts of these
groups, this reduces to O(n log n). Hence the total running
time of an efficient implementation is O(|D| + n log n).

5.2 Properties of the O-estimates
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Figure 6: Inexactness of the O-estimates

It is worthwhile to try to understand why the O-estimate
is not exact. Consider the example in Figure 6(a). The
outdegrees of 1, 2, 3 and 4 are 1, 2, 3 and 4 respectively.
Thus, the O-estimate of the expected number of cracks is
1 + 1

2
+ 1

3
+ 1

4
= 25

12
. However, consider node 1. Only 1 ′

can map to it. A perfect matching can thus map only 1 ′ to
1. This leads to the other edges on 1 to be removed from
the graph. As a consequence, 2 ′ is the only node that can
map to 2 and this cascades to the scenario when 1 ′, 2 ′, 3 ′

Algorithm Propagate
Input: G - A fully compliant bipartite graph over I ∪ J
1. while there is a node with degree 1 in G

Let x be this node (the same holds for x ′).
a. Remove the nodes x and x ′ from G
and their incident edges.
b. For each y such that the edge (x ′, y) is just
removed, decrement Oy by 1.

Figure 7: Reducing the Outdegrees by Propagation

and 4 ′ map to 1,2,3 and 4 respectively. Hence, the number
of cracks is 4. The same argument can be given by starting
with node 4 ′ (which is also of degree 1).

This example shows that when the outdegree of a node is
1, propagation may take place that essentially reduces the
outdegrees of other items. Figure 7 outlines the procedure
to handle this propagation. The complexity of the algorithm
is O(ve), where v is the number of nodes in the graph and e

is the number of edges in the graph. This is because, in the
worst case (as in example 6(a)), the propagation may go on
for v steps until each vertex gets mapped to a single item.
But in practice, the fixed point is often reached in a few
iterations. This propagation procedure should be applied
after step 4(a) in Figure 5. Hereafter, whenever we refer to
outdegrees, we assume that this algorithm has been applied.

The discussion so far focuses on a special case when an
(anonymized) item has an outdegree 1. The question is
whether a similar phenomenon occurs when the outdegree
is 2 or higher. Consider the example in Figure 6(b). This
differs from the example in Figure 6(a) in that no item can
be surely cracked. However, it is clear that a perfect match-
ing would map {1 ′, 2 ′} to {1, 2}, and {3 ′, 4 ′} to {3, 4}. Thus,
the edge (2 ′, 3) is irrelevant. Yet, the O-estimate continues
to count the edge towards the outdegree of item 3.

Furthermore, let us review the situation for a chain belief
function. Consider again the chain of length 2 in Figure 4(a).
By Lemma 5, the answer is 74

45
. However, by the O-estimate,

the answer is 197
120

= 1.6417. The reason for this inexactness
can be explained by considering the items in group S1. An
item in group S1 can map either to F1 or F2 but not both.
Let x and y be items in S1 such that x ′ is in F1 and y ′ is
in F2. The O-estimate assigns a uniform probability of 1

8
to both x and y as they can map to items in either group.
However, the likelihood of x and y being assigned to their
correct groups are not uniform. The O-estimate fails to
capture this non-uniformity.

We generalize the discussion of this example to a general
chain of length k. Consider the chain in figure 4(b). For
each x ∈ Ei, the outdegree Ox is given by 1

ni
. For each

x ∈ Si, the outdegree Ox is given by 1
ni+ni+1

. Hence, the

O-estimate of a belief function β which models a chain of
length k is given by

OE(β) =
∑k

j=1
ej

nj
+

∑k−1
j=1

sj

nj+nj+1

The question is how the O-estimate compares with the
exact formula for chains. The difference (∆) is given by:

∆ =
∑k−1

i=1

[
∑i

j=1(nj−ej−sj−1)]2

sini
+

∑k−1
i=1

[
∑i

j=1(sj+ej−nj)]2

sini+1

−
∑k−1

j=1
sj

nj+nj+1

While analyzing this more formally may be too involved,
we illustrate the magnitude of ∆ with some examples. Con-
sider a chain of size 3 with the following values: n1 = 20,



n2 = 30 and n3 = 20; these values are chosen arbitrarily.
The table below shows the size of ∆ relative to the exact
value, for varying values of e1,e2,e3,s1 and s2. We see that
the percentage difference is small, showing that for chains,
O-estimates are reasonably accurate. In Section 7, the ac-
curacy of O-estimates is evaluated with real datasets.

e1 e2 e3 s1 s2 Percentage error (%)
10 10 10 20 20 1.54
5 10 10 25 20 4.8
5 10 5 25 25 8.3
5 6 5 27 27 5.76

10 20 10 15 15 7.23

So far, we have discussed the shortcomings of O-estimates.
Below we show one nice property of O-estimates, namely,
monotonicity. As the belief interval for an item x gets wider,
the number of anonymized items that can map to it in-
creases. Thus, the expected number of cracks drops. We
formalize this notion below.

Definition 7. Let β1 and β2 be two interval belief func-
tions on I. Then, β1 � β2 whenever ∀x ∈ I, β1(x) ⊆
β2(x). We say that an interval [l1, r1] ⊆ [l2, r2] whenever
l1 ≥ l2 and r1 ≤ r2.

As the uncertainty in belief (width of intervals) grows,
we would expect it to be more difficult on the average to
crack individual items. This is captured by the following
lemma, which states that the O-estimate is monotonically
non-decreasing with respect to the relation �. We will see
in the next section how this property can be made use of.

Lemma 8 (Monotonicity of OE). D is an anonymized
database. Let β1 and β2 be two compliant interval belief
functions such that β1 � β2. Then, OE(β1,D) ≥ OE(β2,D).

Proof Sketch: Let x be any item in I and let O1(x) and
O2(x) be the outdegrees of x in the space of compliant map-
pings for β1 and β2 respectively. Then O1(x) ≤ O2(x). This
implies that

∑
x∈I

1
O1(x)

≥
∑

x∈I
1

O2(x)
⇒ OE(β1,D) ≥

OE(β2,D). Hence the lemma follows.

5.3 α-Compliant Belief Functions
So far, we have derived various formulas for computing the

expected number of cracks with one assumption – full com-
pliancy. That is, we assume that for each item, the hacker’s
belief interval contains the true frequency of the item. This
is possible if the hacker has very good knowledge about the
items, or if the intervals are wide or conservative. However,
in general, there is no reason to believe that full compliancy
is always possible, or even likely. Thus, below we examine α-
compliant belief functions. However, they are tricky to deal
with because the hacker would have no idea which ones of
his/her guessed intervals are not correct. (Had (s)he known,
(s)he would have changed them in the first place!) We ignore
this issue until the next section. Below we proceed with the
analysis of computing the expected number of cracks, given
that somehow we know which items are guessed wrong.

Let β be a belief function on I such that for a subset
of items IC ⊂ I, the function satisfies the compliancy as-
sumption and for I − IC the function is non-compliant.
Thus, α is defined as the ratio of the size of IC to that
of I. To approximate the expected number of cracks, the
O-estimate heuristic can easily be applied. However, for the
items x ∈ (I − IC), the consistency assumption guarantees

that these items will not be cracked. Thus, it is sufficient to
simply sum over those items x ∈ IC. Hence, the O-estimate
for β is defined as OE(β,D) =

∑
x∈IC

1
Ox

.
Intuitively, when belief functions become more and more

non-compliant, the expected number of cracks should de-
crease, as it is impossible to crack the non-compliant items
by a consistent mapping. This is captured by the following
lemma which states that the O-estimate decreases as the
degree of non-compliancy increases.

Definition 9. Let β1 and β2 be two interval belief func-
tions on I. Let β1 be compliant on the set of items I1

C ⊂ I,
and β2 be compliant on I2

C ⊂ I. We say that β2 �C β1

whenever: (i) I2
C ⊆ I1

C; and (ii) ∀x ∈ I2
C, β1(x) ⊆ β2(x).

The above definition imposes a partial order on α-compliant
belief functions, based on the subset of compliant items. As
this subset becomes smaller and smaller, the expected num-
ber of cracks becomes smaller as the guessed intervals of the
compliant items do not shrink. The proof of this lemma is
similar to that of the earlier monotonicity lemma.

Lemma 10 (Monotonicity of OE for α-compliancy).
Let D be an anonymized database. Let β1 and β2 be two in-
terval belief functions such that β2 �C β1. Then, OE(β2,D) ≤
OE(β1,D).

6. A RECIPE FOR RISK ASSESSMENT
Thus far, we have studied the various cases involving full

or partial compliancy involving point-valued or interval be-
lief functions. These are various ways to capture information
that a hacker may possess. Now we are ready to tackle the
original dilemma facing the data owner, of whether to re-
lease the anonymized data: Just how safe is the anonymized
data in the presence of partial information?

Let us begin with the absolute worst case: the compliant,
point-valued belief function. We feel that for most applica-
tions, this worst case is too conservative, as it is unrealistic
to expect that the hacker to know each frequency precisely.
The expected percentage of cracks is typically unrealistically
high. Thus, the owner is ill advised to make decisions based
on this value, unless (s)he is paranoid.

6.1 Determining the Width of the Intervals
It makes sense to relax the worst case in two ways. First,

the compliant point-valued belief function can be extended
to a compliant interval belief function. That is, if fx denotes
the true frequency of item x, then the interval guessed by
the compliant interval belief function is set to [fx − δ, fx +
δ]. From the data owner’s perspective, this belief function
corresponds to the situation when the hacker is accurate in
guessing a right “ball-park” frequency range for every item.

The question here is what is an appropriate value of δ to
use. As a heuristic, we propose using the median frequency
gap for every item. That is, the frequency gaps between two
successive frequency groups in the data are computed, and
the median gap between the groups is used.

While more details of the benchmark datasets we use will
be given in the next section, the table in Figure 9 shows
various statistics of these datasets. The columns of the ta-
ble give the number of items in the domain, the number of
transactions, the number of distinct frequency groups, the
number of singleton frequency groups, and the mean, me-
dian, minimum and maximum frequency gap between suc-
cessive groups. Two observations can be made.



• These datasets are chosen to represent various char-
acteristics. For instance, the 130 items of the CON-
NECT dataset form 125 distinct frequency groups, 122

of which consists of a single item. In contrast, the 7120

items of the PUMSB items cluster into 651 frequency
groups. Nevertheless, there are still a large number of
singleton frequency groups, confirming that for real
datasets, the compliant point-valued belief function
gives too high an estimate on the percentage of cracks.

• For all the datasets, the median frequency gap is much
closer to the minimum than to the maximum. In
contrast, the average frequency gap is much larger
than the median. Thus, by choosing the median value
as the width δ of the intervals (hereafter denoted as
δmed), the data owner errs on the conservative side.
This is because according to the monotonicity result in
Lemma 8, the wider the interval, the smaller is the ex-
pected number of cracks. Thus, as compared with us-
ing the median, using the average may under-estimate
the percentage of cracks. In section 7.4, we give ad-
ditional details about using other alternatives, such as
the sampled median and the sampled average, as the
width of the intervals.

Figure 8 shows a recipe we suggest to a data owner to
assess the risk of releasing anonymized data. Steps (1) to (7)
follow what we have discussed so far. Notice that the recipe
requires an input percentage τ, called the degree of tolerance,
which gives a fraction of the items I that the data owner
can tolerate being cracked. If the expected number of cracks
based on the compliant point-value belief function is already
within the tolerance, then it is an easy decision to release
the anonymized data. In the most likely case, however, this
estimate is too high. The recipe then suggests computing the
O-estimate based on the compliant interval belief function
with the width δmed (i.e., steps (3) to (7)). Note that we use
a uniform width of 2× δmed for all the intervals. This does
not restrict a hacker from using a non-uniform width as (s)he
might have varying levels of knowledge about different items.
But even if this is true, there is little reason to believe that
the data owner has access to the hacker’s belief function.
Thus, in the recipe, it is a reasonable simplification to use a
uniform width.

It is possible that the O-estimate based on the compliant
interval belief function is still higher than the owner’s toler-
ance. After all, it is unlikely that the belief function satisfies
the compliancy assumption for all the items in I, particu-
larly if the domain is large. The hacker’s guesses may be
correct for some items but incorrect for the others. Thus,
we resort to α-compliant belief functions.

6.2 Determining the Degrees of Compliancy
While in the previous section we give a formula for com-

puting the O-estimate for an α-compliant β, applying the
formula is tricky in practice. The difficulties are that (i) it
is not clear which values of α could be used, and (ii) even if
an α value is established, which specific subset of compliant
items IC could apply.

Instead of picking specific α values to use, our approach is
to examine the risk over a range of α values. Specifically, we
use the data owner’s specified tolerance τ to determine the
largest α value for which the O-estimate of expected cracks
fall within the tolerance. Given the monotonicity behav-
ior stated in Lemma 10, we can use a binary search to find

Algorithm Assess-Risk
Inputs:τ - degree of tolerance; D - Anonymized Database
1. Compute g based on Lemma 3.
2. If g ≤ (τ× |I|), disclose D and stop.
3. Compute the frequency groups from D, and the median gap

M between frequency groups
4. Set width δmed to be M.
5. Set up β(x) = [fx − δmed, fx + δmed] for x ∈ I, where

fx denotes the frequency of x ∈ I.
6. Compute the O-estimate OE(β,D) according to Figure 5.
7. If OE(β,D) ≤ (τ× |I|), disclose D and stop.
8. Set α to be 1.
9. Perform a binary search on α to determine the largest

α so that the corresponding α-compliant belief function
β satisfies the condition OE(β,D) ≤ (τ× |I|).

10. Return the value of α.

Figure 8: A Suggested Recipe for Risk Assessment

this value αmax. Essentially, it says that in order for the
hacker not to crack more than the fraction τ of items that
the owner can tolerate, the hacker must not correctly guess
the frequency intervals of more than αmax × |I | items. It is
up to the owner to decide whether αmax is high enough for
comfort. For example, if αmax = 0.8, then the data owner
may decide to disclose the data because the owner consid-
ers it highly unlikely that the hacker can guess correctly the
frequency intervals, within δmed, of 80% of the items, par-
ticularly when the domain is large. On the other hand, if
αmax = 0.2, the data owner may decide to withhold the
data because 20% correct guesses may be too small for com-
fort. Later in Figure 13, a heuristic is proposed to evaluate
whether αmax is high enough.

Steps (8) and (9) in Figure 8 outline the binary search.
There is, however, one important detail. The binary search
is based on the monotonicity stated in Lemma 10, which
requires a partial ordering on the subset of compliant items
IC. This brings us back to the general issue of how to deter-
mine membership in IC. Our approach is to take a random
selection of items and average over a few runs. For exam-
ple, let us say that when α = 1, step (7) gives too high an
expected number of cracks. Thus, the algorithm enters into
the first iteration of the binary search, with α = 0.5. Say the
algorithm averages over 5 runs. Thus, there are five subsets
of compliant items I1

C, . . . , I5
C, each having 50% of items

randomly picked to be non-compliant. These subsets give
rise to five 0.5-compliant belief functions β1, . . . , β5. Thus,
the average value of OE(β1,D), . . . , OE(β5,D) is used in the
condition check in Step (9).

Let us suppose that the above average value is still beyond
the owner’s tolerance, and the binary search continues with
α = 0.25. In that case, half of the compliant items in each of
I1

C, . . . , I5
C are randomly picked to be non-compliant. The

search then continues as discussed before. Anchoring step
(9) in this manner over multiple IC’s satisfies the require-
ment of Lemma 10.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
In this section, we evaluate empirically the accuracy of

the O-estimates and the effectiveness of the recipe. We
used real datasets that we obtained from the UCI reposi-
tory (http : //kdd.ics.uci.edu) and the FIMI repository
(http : //fimi.cs.helsinki.fi/fimi03/). Figure 9 shows the
characteristics of the datasets. The domain varies from 75

to 16470 items, and the number of transactions varies from



Dataset # items # Trans. # Gps. Size 1 Gps.
CONNECT 130 67557 125 122

PUMSB 2113 49046 650 421
ACCIDENTS 469 340184 310 286

RETAIL 16470 88163 582 218
MUSHROOM 120 8124 90 77

CHESS 75 3196 73 71

Dataset Mean Median Min. Max.
CONNECT 0.0081 0.0029 0.000015 0.0519

PUMSB 0.00154 0.000041 0.00002 0.0536
ACCIDENTS 0.00324 0.000176 0.000029 0.04966

RETAIL 0.00099 0.0000113 0.0000113 0.30102
MUSHROOM 0.01124 0.00394 0.00049 0.1477

CHESS 0.01389 0.00657 0.000313 0.0494

Figure 9: Frequency Statistics for Various Benchmarks

3196 to 340184. The number of frequency groups and the
number of singleton frequency groups are given. In many
cases, the latter number is high in relation to the total
number of items, thus confirming that the compliant, point-
valued belief function usually gives too high an estimate on
the percentage of cracks in practice. However, the RETAIL
dataset is very different. The ratio of the number of trans-
actions to the domain size is 1-2 orders of magnitude smaller
than those for the other datasets. We label this dataset as
“sparse”. The table also shows the average, median, min-
imum and maximum gap between frequency groups. Even
though we obtained the experimental results for all these
datasets, we present results only for a subset of the datasets
due to space limitations.

All procedures were implemented in C++. The code to
simulate the expected number of cracks for a given interval
belief function needs to generate many perfect matchings
from the bipartite graph that represents the space of all
consistent mappings. This generation of samples is compli-
cated by the fact that we need matchings that are perfect,
consistent, and as much as possible, random. To do so, the
generation procedure initially starts with a perfect match-
ing where every edge is of the form (i ′, i) i.e, every item is
cracked. Then, for a fixed number of iterations (100, 000),
a random permutation P of I is generated. For each i ∈ I,
the edge (i, x) in the matching is swapped with the edge
(P(i), y) in the matching if the resulting edges (i, y) and
(P(i), x) are still consistent. This gives a seed matching.
Then the procedure applies another 10,000 iterations as be-
fore to generate the first sample. The iterations continue
and for every 10,000 iterations, a new sample is generated.
In this way, the procedure generates 250 samples. At this
point, a new seed matching is re-generated from scratch, and
another 250 samples are generated. For the results reported
below, we used 5,000 samples. The experiments were run on
a dual Athlon MP1800+ processor (1533 MHz), with 256KB

cache, 1GB of main memory (266MHz DDR RAM).

7.2 Accuracy of the O-Estimates
Figure 10 compares the O-estimates with the estimates

from simulation on the four benchmarks with full compli-
ancy (i.e., Step (6) of Figure 8). In all cases, the O-estimates
are very accurate as compared with the average simulated
estimates. Recall that the average simulated estimates is ob-
tained from 5 runs. We also recorded the standard deviation
on the simulated estimates. In all cases, the differences be-
tween the O-estimates and the average simulated estimates
are well within one standard deviation. The accuracy shown
by the O-estimates also confirms that the recipe’s choice of
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Figure 10: O-estimates vs Average Simulated Estimates

using δmed as the width of the intervals works out well. In-
cidentally, even for the RETAIL dataset, it takes only a few
seconds to compute the O-estimate.

7.3 The Effectiveness of the Recipe
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Figure 11: Varying the Degree of Compliancy

Figure 11 illustrates how the proposed recipe in Figure 8
works for real datasets. The x-axis shows the values of α and
the y-axis shows the O-estimates expressed in fractions of
the domain size. Let say that the data owner has a tolerance
level of τ = 0.1, as shown by the horizontal line. First,
for the RETAIL dataset, it is a clear decision to release
the anonymized data. In fact, even if the hacker correctly
guesses all the frequency intervals, the expected fraction of
cracks is still below 0.02.

The other datasets are different from RETAIL. For the
PUMSB dataset, a tolerance level of 0.1 corresponds to a
compliancy αmax ≈ 0.7. In other words, the hacker needs
to have correctly guessed the intervals for 70% of items. This



percentage is probably high enough to make the data owner
feel secured in releasing the data. The situation is similar
for the ACCIDENTS dataset.

The situation for CONNECT is very different. The tol-
erance level of 0.1 corresponds to αmax ≈ 0.2. Thus, the
comfort level of the data owner is only about 20% of the
items, which corresponds to 26 items to be exact. The data
owner may want to think twice before releasing the data.

The shapes of the curves in Figure 11 are interesting. For
RETAIL and CONNECT, the curves are approximately lin-
ear. Notice that CONNECT has a small number of items
but a relatively large number of transactions, whereas the
situation is rather contrary for RETAIL. Yet, their curves
look similar. In contrast, the curves for PUMSB and ACCI-
DENTS are super-linear. Thus, how the O-estimates vary
with the degree of compliancy does not appear to be deter-
mined directly by domain size or transaction size.

Finally, Figure 11 shows again the comparison between
the O-estimates and the average simulated estimates. They
remain very close for all degrees of compliancy, confirming
the accuracy of the O-estimates.

7.4 Degrees of Compliancy from Similar Data
As shown above, the data owner needs to wrestle with

the decision whether αmax is high enough, particularly if
the hacker may have gained partial information based on
similar data. The question is how to define “similar” data.
Below, we experiment with the idea that the data owner
simulates similarity by sampling. That is, the larger the
sample D ′ ⊂ D, we expect D ′ to be more similar to D.
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Figure 12: Degrees of Compliancy from Similar Data

For the ACCIDENTS and RETAIL datasets, Figure 12
shows the variation in the degree of compliancy of a be-
lief function created from samples of varying percentages.
Rather surprisingly, the degrees of compliancy can be high
even for small samples. For instance, for a sample of 10%,
the α value is above 0.7 for ACCIDENTS. This information
can be very significant for the data owner. For example, for
the ACCIDENTS dataset, recall from our earlier discussion
based on Figure 11 that for a tolerance of τ = 0.1, the cor-
responding αmax = 0.65. Seeing that even a 10% sample,
corresponding to a somewhat similar data set, can easily
give an α value higher than 0.7, the owner may decide not
to disclose the data after all.

In [7], Clifton argues that releasing a small random sam-
ple poses no threat to the data owner as little information
can be revealed. In the context of compliancy, this does not
appear to be true for every dataset.

Procedure Similarity-by-Sampling
1. For a given range of sample sizes p

a. Get a sample Dp of the database D.

b. Determine the frequency f̂x for every x ∈ I in Dp.
c. Determine the sampled median frequency gap δ ′med
of the frequency groups in Dp.
d. Determine the degree of compliancy α by checking

for each x ∈ I, whether fx ∈ [̂fx - δ ′med, f̂x + δ ′med].
e. Repeat (a) to (d) for 10 samples and get the average αp.

Figure 13: Data Similarity by Sampling

As shown in Figure 12, for the RETAIL dataset, there is a
gradual drop in compliancy as the sample size increases un-
til the size reaches 50% of the original size. This is counter-
intuitive on first sight. But there is an interesting subtlety
here. For a normal dataset, like ACCIDENTS, as the sample
size increases, the sampled median gap between frequency
groups increases. Thus, the width of the intervals increases,
making compliancy easier to satisfy. Hence, there is a grad-
ual increase in compliancy as the sample size increases. In
contrast, the RETAIL dataset is abnormally sparse. In
particular, for a 10% sample, there are only about 8800
transactions over a domain of about 16,000 items. Thus,
the items tend to cluster together as their frequencies are
under-determined. As the sample size increases, some of
the items in one frequency group, start to separate into more
frequency groups. Thus, the sampled median gap between
frequency groups drops, narrowing the intervals of the be-
lief function. Hence, the compliancy drops accordingly. This
phenomenon persists until the number of frequency groups
stabilizes; from that point on, the normal trend kicks in.
Incidentally, if instead of the sampled median, the sampled
average gap is used as the width of the intervals in the be-
lief function, the degree of compliancy is at 0.99 (not shown
in the figure), uniformly across all sample sizes. This again
confirms that using the average can be misleading.

We provide a simple procedure shown in Figure 13 that
implements the idea of simulating similarity by sampling. It
uses multiple samples of varying sizes to generate the kind
of curves shown in Figure 12 for a given dataset. This curve
can then be used in conjunction with the recipe in Figure 8.
Specifically, the recipe returns the αmax value. The data
owner can then use the curve to ascertain whether αmax is
high enough based on the corresponding sample size value.

8. DISCUSSION

8.1 Beyond Frequent Sets
In this paper, we address the question of how safe anonymized

data is in the presence of partial information. So far, we use
a belief function to represent the partial information on the
frequencies of items. This is the first level of our analy-
sis. In the second level of our analysis, we use the belief
function and the anonymized data to set up an appropriate
bipartite graph which represents the space of all consistent
crack mappings. It is important to note that while the first
level of partial information representation is specific to fre-
quent sets, the second level of analyzing the bipartite graph
is completely general. That is to say, much of the results
presented here can carry over to other situations, as long as
the bipartite graph is set up by some means. Specifically,
Lemmas 1 to 4 are already expressed in terms of the under-
lying bipartite graph. At present, Lemmas 5, 6, 8 and 10 are



expressed in terms of the belief functions, mainly for ease of
understanding. However, they can re-stated from the per-
spective of the underlying bipartite graph. As an example,
Lemma 8 can be restated as follows:

Let G1 and G2 be bipartite graphs with the vertex set I ∪ J
and edge sets E1 and E2 respectively, modeling the space of crack

functions β1 and β2. Then, if G1 is a subgraph of G2, then the

O-estimate for G2 is smaller than that of G1.

Let us consider an example. Suppose the task at hand is
classification, and the data owner needs to decide whether
to release an anonymized relation with attributes: age, eth-
nicity and car-model. Let say that the real domain consists
of people identified by their names (e.g. {Bob,Mary,. . . }),
and the anonymized domain identified by an integer {1’,
2’, . . . }. Suppose that the hacker has partial information
about certain individuals. Recall from Figure 12 that even
a small sample of 10% can reveal a lot of true information.
In any case, regardless of how this piece of partial informa-
tion comes about, if the hacker somehow knows that John is
Chinese owning a Toyota, then edges can be set up between
(x ′, John) for all anonymized items x ′ with ethnicity being
Chinese and car-model being Toyota. Similarly, if the hacker
somehow knows that Mary’s age is between 30 and 35, the
appropriate edges can be set up in the bipartite graph to
connect Mary to all anonymized items x ′ in the same age
group. And if the hacker has no knowledge of Bob, Bob
is connected to every anonymized item in the graph. Once
the graph is set up, we can re-apply all the lemmas above
to estimate the expected number of cracks, which may help
the data owner to decide whether it is safe to release the
anonymized relation.

8.2 Summary and Ongoing Work
A classic dilemma that an organization faces is if the data

is not released, they cannot take advantage of the opportu-
nities offered by data mining. On the other hand, if they do,
they run the risk of disclosing sensitive data. To mitigate
the latter, they may sanitize their data or more generally
apply some data transformations. In this paper, we address
the question of how safe the anonymized data is with respect
to protecting the true identities of the data items. The nov-
elty of our work is to incorporate the possible existence of
partial information possessed by the hacker. We propose
various classes of belief functions, representing the captur-
ing of various degrees of partial information. We derive
exact or approximate formulas for computing the expected
number of cracks. In particular, we propose the O-estimate
heuristic which is applicable to any bipartite graph/belief
function, and easy to compute. We evaluate the accuracy
of O-estimates first by comparing with chain interval belief
functions, and later by experimenting with real datasets.
Last but not least, we provide a recipe to help the data
owner to decide whether releasing the anonymized data is
safe enough. And as pointed out above, our analytic frame-
work based on bipartite graph extends beyond frequent sets
to other data mining and analysis tasks where evaluating
the risk of disclosure is important.

In ongoing work, we extend belief functions defined over
the domain of items to those defined over the powerset. That
is, while this paper focuses on the identities of individual
items, the next step is to concentrate on the identities of sets
of items. Consider the situation in 6(b) again. While there is
no information to distinguish between 1’ and 2’, the itemset
{1’, 2’} indisputably maps correctly to the itemset {1, 2}.

This is particularly interesting for frequent set mining.
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