
Indexing Spatio-Temporal Trajectories with
Chebyshev Polynomials

Yuhan Cai
University of British Columbia

2366 Main Mall
Vancouver, Canada

ycai@cs.ubc.ca

Raymond Ng
University of British Columbia

2366 Main Mall
Vancouver, Canada

rng@cs.ubc.ca

ABSTRACT
In this paper, we attempt to approximate and index a d-
dimensional (d ≥ 1) spatio-temporal trajectory with a low
order continuous polynomial. There are many possible ways
to choose the polynomial, including (continuous) Fourier
transforms, splines, non-linear regression, etc. Some of these
possibilities have indeed been studied before. We hypoth-
esize that one of the best possibilities is the polynomial
that minimizes the maximum deviation from the true value,
which is called the minimax polynomial. Minimax approx-
imation is particularly meaningful for indexing because in
a branch-and-bound search (i.e., for finding nearest neigh-
bours), the smaller the maximum deviation, the more prun-
ing opportunities there exist. However, in general, among
all the polynomials of the same degree, the optimal mini-
max polynomial is very hard to compute. However, it has
been shown that the Chebyshev approximation is almost
identical to the optimal minimax polynomial, and is easy to
compute [16]. Thus, in this paper, we explore how to use
the Chebyshev polynomials as a basis for approximating and
indexing d-dimensional trajectories.

The key analytic result of this paper is the Lower Bound-
ing Lemma. That is, we show that the Euclidean distance
between two d-dimensional trajectories is lower bounded by
the weighted Euclidean distance between the two vectors of
Chebyshev coefficients. This lemma is not trivial to show,
and it ensures that indexing with Chebyshev coefficients ad-
mits no false negatives. To complement the analytic result,
we conducted comprehensive experimental evaluation with
real and generated 1-dimensional to 4-dimensional data sets.
We compared the proposed scheme with the Adaptive Piece-
wise Constant Approximation (APCA) scheme. Our prelim-
inary results indicate that in all situations we tested, Cheby-
shev indexing dominates APCA in pruning power, I/O and
CPU costs.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

In this paper, our focus is on indexing large collections
of spatio-temporal trajectories for similarity matching. A
d-dimensional spatio-temporal trajectory is a sequence of
the form 〈(t1, �v1), . . . , (tN , �vN)〉, with t1 < . . . < tN , and
�vi of arity d for all 1 ≤ i ≤ N . Each pair (ti, �vi) records
the values of a vector of scalars at time ti. For example,
if the vector is of arity 1, the trajectory is a time series.
For a second example, �vi may capture the 2-dimensional or
3-dimensional coordinates of a flying object at time ti.

Time series are ubiquitous in temporal databases, which
is a well-established area in database studies. Stock prices,
salary histories, etc. are typical examples of time series.
There are also many large collections of higher-dimensional
spatio-temporal trajectories, thanks in part to the develop-
ment of cost-effective mobile technologies [22, 26]. Exam-
ples include spatio-temporal trajectories of cars, airplanes,
and moving objects generated by motion tracking devices in
surveillance applications and electronic games applications.

Specifically, as part of our collaboration with an electronic
games company, we encounter large collections of 2-, 3- and
4-dimensional spatio-temporal trajectories, for which sim-
ilarity matching of the whole trajectories is a fundamen-
tal operation. A 2-dimensional example is the coordinates
of National Football League players moving on the foot-
ball field, or National Hockey League (NHL) players skating
on the ice rink. A 3-dimensional example is flight simu-
lation data. Finally, a 4-dimensional example is the four
angles of body joints of a person playing kung-fu or danc-
ing. This type of data sets is useful for games developers
and medical professionals. The point here is that beyond 1-
dimensional time series, applications of higher-dimensional
spatio-temporal trajectories are ubiquitous.

One thing in common among the examples cited above
is that they have smooth and continuous trajectories. This
is because all those activities (e.g., human movement, fly-
ing objects) are governed by the laws of physics, giving rise
to smooth motion trajectories. While we will discuss re-
lated work in greater details below, it suffices to say that
most existing indexing frameworks are based on piecewise
approximations, where each piece is either constant or lin-
ear. That is to say, a smooth and continuous trajectory is
approximated with a piecewise discontinuous function. This
mismatch may cause unnecessary error or deviation, and
may lead to a loss in pruning power in a branch-and-bound
search.

In this paper, we seek to approximate and index a d-
dimensional spatio-temporal trajectory with a low order con-

tinuous polynomial. There are many possible ways to choose
the polynomial, including (continuous) Fourier transforms,
splines, non-linear regression, etc.; and indeed, some of these
possibilities have been studied before. While all approxima-
tions are not exact by definition, the approximation that
minimizes the maximum deviation from the true value is
very desirable. This is called the minimax approximation.
Minimax approximation is particularly meaningful for in-
dexing because in a branch-and-bound search (i.e., for find-
ing nearest neighbours), the smaller the maximum devia-
tion, the more pruning opportunities there exist. However,
in general, among all the polynomials of the same degree,
the optimal minimax polynomial is very hard to compute.
It has been shown that the Chebyshev approximation is al-
most identical to the optimal minimax polynomial, and is
easy to compute [16]. Thus, in this paper, we explore how
to use the Chebyshev polynomials as a basis for indexing
d-dimensional trajectories.

As a preview, we make the following contributions in this
paper:

• Recall that a spatio-temporal trajectory is of the form
〈(t1, �v1), . . . , (tN , �vN)〉. Thus, it is discrete in nature.
We show how to approximate such a discrete “func-
tion” with Chebyshev polynomials. We first begin
with the 1-dimensional case of time series. Our repre-
sentation scheme allows us to prove a main result of
this paper – the Lower Bounding Lemma. That is, the
true distance between two time series is lower-bounded
by the distance in the index space (i.e., the space of
Chebyshev coefficients in our case). As shown in Sec-
tion 3, this is not a trivial result to prove.

• We generalize from the 1-dimensional case to the d-
dimensional case (d ≥ 1). Specifically, a d-dimensional
trajectory is projected onto each dimension to create d
1-dimensional trajectories. We show that this projec-
tion preserves the Lower Bounding Lemma. We also
give algorithms for building an index of Chebyshev
coefficients, and for supporting similarity searching of
whole trajectories.

• To evaluate the effectiveness of the minimax prop-
erty of Chebyshev polynomials on indexing, we con-
ducted an extensive experimental evaluation. We used
1- to 4-dimensional real data sets, as well as generated
data sets. For time series, the Adaptive Piecewise
Constant Approximation (APCA) scheme has been
shown to outperform all other schemes including Dis-
crete Fourier Transform (DFT), Discrete Wavelet Trans-
form (DWT) and Piecewise Aggregate Approximation
(PAA) [11]. We obtained the APCA code from Keogh
et al., and compared with Chebyshev approximation.
We also extended APCA to d-dimensional situations
as a “straw man” strategy.

From 1- to 4-dimensional, real to generated data, Cheby-
shev dominates APCA in pruning power, I/O cost and
CPU cost. Our empirical results indicate that Cheby-
shev approximation can deliver a 3- to 5-fold reduction
on the dimensionality of the index space. For instance,
it only takes 4 to 6 Chebyshev coefficients to deliver
the same pruning power produced by 20 APCA coeffi-
cients. This is a very important advantage. As the di-
mensionality curse on the indexing structure is bound

to set in sooner or later, Chebyshev coefficients are
far more effective than APCA in delivering additional
pruning power before that happens.

The paper is organized as follows. Below we discuss re-
lated work. In the next section, we review Chebyshev poly-
nomials and their properties central to the development of
this paper. In Section 3, we show how to approximate a
time series with a Chebyshev polynomial, and give an ex-
ample. We also propose a metric distance function between
two vectors of Chebyshev coefficients. Finally, we prove the
Lower Bounding Lemma. In Section 4, we generalize the
earlier results for time series to deal with d-dimensional tra-
jectories. In Section 5, we present our experimental setup
and results. We compare Chebyshev and APCA on pruning
power, I/O and CPU costs.

1.1 Related Work
There is a vast body of literature on indexing 1-dimensional

time series. Examples include earlier works by Faloutsos et
al. [5], Agrawal et al. [1], Korn et al. [15], to more recent
studies by Rafiei and Mendelzon [20], Chan and Fu [4], Wu
et al. [27], Gunopulos and Das [7], Keogh et al. [12, 11], Popi-
vanov and Miller [18]. These studies can be divided into the
following categories based on the underlying approximation
schemes:

• DFT: including [5, 1, 20]

• DWT: including [4, 27, 9, 18]

• PAA: including [12, 28]

• APCA: including [11]

• SVD: including [15, 10]

DWT, PAA and APCA fall into the category of approxi-
mation with a discontinuous piecewise function. DWT fur-
ther requires the length of a time series be a power of two.
The study presented in [11] shows that APCA dominates
DWT and PAA in pruning power by an order of magni-
tude. Thus, the latter two schemes are not included in our
experimental comparison.

DFT falls into the category of approximating a time series
with a continuous function. But while Fourier transforma-
tion is connected to Chebyshev approximation, the former
does not have the minimax property that the latter enjoys.
Because the study in [11] shows that APCA dominates DFT
in pruning power by an order of magnitude, we omit DFT
from our experimental comparison as well.

SVD approximation consists of space rotation and trunca-
tion. It is a global technique, and requires the computation
of eigenvalues and eigenvectors of large matrices. Thus, it is
far more expensive than the schemes mentioned above and
the proposed scheme based on Chebyshev polynomials. And
in terms of pruning power, it is not clear whether SVD is
comparable to APCA. Thus, SVD is also omitted from our
experimental comparison.

Studies considering indexing d-dimensional trajectories are
not as many as the ones for time series. In [14], Kollios et
al. considers indexing of moving objects to answer range
queries of their future positions. Their framework answers
queries of the form: “report the objects residing inside a
given rectangle during a specified time period”. As such, it

is not designed for similarity retrieval of trajectories. Fur-
thermore, it is based on the assumption that all the objects
move with a constant velocity. The indexing scheme approx-
imates each trajectory by straight line segments.

In [3], Chakrabarti and Mehrotra propose using SVD for
indexing in high dimensional spaces. Specifically, clustering
is first performed, and SVD is then applied to the local
clusters, making it a semi-local approach. The proposed
scheme based on Chebyshev polynomials is local and far
less expensive in computational effort.

While most of the aforementioned studies are based on
using the Euclidean distance, there are studies considering
other possibilities. In [17], Perng et al. propose a new sim-
ilarity model for time series called the Landmark model.
The model is claimed to better match human intuition and
episodic memory than the usual Lp-norm framework. In
two recent studies, Kollios and Gunopulos et al. consider
indexing multi-dimensional trajectories based on non-metric
distance functions such as the longest common subsequence
distance [24, 8]. A weaker version of the Triangle Inequality
is used to answer k-nearest-neighbors (kNN) queries [21].

Even though approximations are used in the filtering step,
the indexing proposed in this paper belongs to the class of
exact schemes for similarity searching of the whole trajecto-
ries. That is to say, the schemes guarantee no false negatives.
In the literature, there are studies which consider provid-
ing faster approximate similarity search, at the expense of
allowing both false positives and negatives. Examples in-
clude the studies by Shatkay and Zdonik [23], and Keogh
and Smyth [13]. A piecewise linear approach is used in all
these studies.

2. BACKGROUND: CHEBYSHEV APPROX-
IMATION

In this section, we review Chebyshev polynomials and
their key properties. Specifically, we discuss their orthog-
onality and the computation of the Chebyshev coefficients.
These concepts are central to the following sections.

Definition 1. (a) The Chebyshev Polynomial Pm(t) is
a polynomial in t of degree m, defined as:

Pm(t) = cos(m cos−1(t))

for t ∈ [−1, 1].

(b) Given the trigonometric identity cosmθ+cos(m−2)θ =
2cosθcos(m − 1)θ, the Chebyshev polynomials can be
rewritten with the recurrence relation:

Pm(t) = 2tPm−1(t) − Pm−2(t)

for all m ≥ 2 with P0(t) = 1 and P1(t) = t.

From the above definition, the first few Chebyshev poly-
nomials are:

P0(t) = 1

P1(t) = t

P2(t) = 2t2 − 1

P3(t) = 4t3 − 3t

P4(t) = 8t4 − 8t2 + 1

Even though in the above definition, t is defined over the
interval [-1,1], the definition can be easily extended to any

interval [a, b]. See [16] for more details. Without loss of
generality, hereafter we simply focus on the interval [-1,1].

Concerning Chebyshev polynomials, a key property is that
the system of Chebyshev polynomials P0(t), . . . , Pm(t) is or-
thogonal. Two polynomials are orthogonal if their inner
product is equal to 0. The inner product of two Chebyshev
polynomials is defined as:

〈Pi, Pj〉 =

Z 1

−1

Pi(t)Pj(t)√
1 − t2

dt

The following theorem holds for the inner product.

Theorem 1 ([16]). The following is true for the Cheby-
shev polynomials P0(t), . . . , Pm(t):

〈Pi, Pj〉 =

Z 1

−1

Pi(t)Pj(t)√
1 − t2

dt =

8<
:

0 if i �= j
π
2

if i = j �= 0
π if i = j = 0

As introduced above, hereafter we refer to:

w(t) =
1√

1 − t2

as the Chebyshev weight function. The purpose of the weight
function is to make the result of the integration exact (e.g.,
π) [16].

Given the orthogonality of the Chebyshev polynomials,
they can be used as a base for approximating any function.
That is, given a function f(t), it can be approximated as:

f(t) � c0P0 + . . . + cmPm

The approximation is exact if f(t) is a polynomial and its
degree is less than or equal to m.

As a framework for indexing, the key question is how easy
to compute the coefficients c0, . . . , cm. The following theo-
rem is called the Gauss-Chebyshev formula.

Theorem 2 ([16]). Let f(t) be a function to be approx-

imated. Pm(t) has m roots, namely tj = cos (j−0.5)π
m

for
1 ≤ j ≤ m. Then:

(a) The coefficient c0 is given by:

c0 =
1

m

mX
j=1

f(tj)P0(tj) =
1

m

mX
j=1

f(tj)

(b) For all 1 ≤ i ≤ m, the coefficient ci is given by:

ci =
2

m

mX
j=1

f(tj)Pi(tj)

The above formula gives an explicit way to compute each
coefficient ci. Note that in the above formulas for c0 and
ci’s, the constants differ by a factor of 2. This is a direct
consequence of the second and third cases shown in The-
orem 1 (i.e., π versus π/2). Figure 1 summarizes all the
symbols used in this paper.

3. INDEXING WITH NO FALSE NEGATIVES
In this section, we focus on 1-dimensional spatio-temporal

trajectories, i.e., time series. In Section 4, we generalize to
higher dimensional trajectories.

Given a collection of time series of length N , we intend to
represent each time series by its Chebyshev approximation

Notations Meanings

Pm(t) Chebyshev Polynomial of degree m
m the degree of the polynomial Pm(t)

also the degree of the approximated polynomial
n the number of Chebyshev coefficients, i.e., n = m + 1
ci the coefficient of Pi(t) in an approximation
M the number of trajectories
N the (padded) length of each trajectory
d dimensionality of the trajectories
�v a vector of arity d
S a spatio-temporal trajectory 〈(t1, �v1), . . . , (tN , �vN)〉
�C the vector of n Chebyshev coefficients for S

f(t) an interval function defined for trajectory S

Figure 1: Summary of Notations

of degree m, with m 	 N . To facilitate fast searching, the
n = m+1 Chebyshev coefficients are to be stored in a multi-
dimensional index structure. As such, n is typically small,
say below 25.

To show that indexing the time series is reduced to in-
dexing their Chebyshev coefficients, we follow the GEMINI
framework [5]. We first establish a distance metric for the
Chebyshev coefficients. In this paper, we use Euclidean dis-
tance (denoted as Disteuc) to measure the distance between
two time series S1, S2. We propose in Section 3.4 a natural
Euclidean variant (denoted as Distcby) for measuring the
distance between the two corresponding vectors of Cheby-
shev coefficients �C1, �C2. We then establish the important
Lower Bounding Lemma in Section 3.5:

Distcby(�C1, �C2) ≤ Disteuc(S1, S2)

This lemma is critical in guaranteeing no false negatives in
using the index as a filter. And the tighter the lower bound,
the smaller is the number of false positives.

3.1 Assumptions
Concerning the studies of time series and trajectories in

the literature, the following assumptions may be made:

• Same-length: That every time series has the same
length, i.e., N time points.

• Power-of-2: That every time series has a length 2k

for some positive integer k.

• Same-set: That every time series occur at the same
set of time points {t1, . . . , tN}. Thus, this assump-
tion automatically includes the same-length assump-
tion. However, the width between a pair of successive
time points ti and ti+1 is not necessarily the same as
the width between any other pair.

• Same-set-uniformly-spaced: This extends the same-
set assumption to require that the width between a
pair of successive time points be the same everywhere,
i.e., (ti − ti−1) = (ti+1 − ti).

In this study, like most frameworks on trajectory match-
ing, we make the same-length assumption. If the time se-
ries are not of the same length, padding techniques may be
applied (see Matlab for example). Unlike some other frame-
works, like wavelet decompositions [4, 27, 9, 18], we do not
require the power-of-2 assumption. Furthermore, we make
the same-set assumption to make the ensuing analysis eas-
ier. If this assumption is not met, interpolation techniques
may be applied. The results to be presented in this paper
do not require the same-set-uniformly-spaced assumption.

3.2 Chebyshev Approximation of a Time Se-
ries

Given a time series, we begin with the computation of the
Chebyshev coefficients. However, Theorem 2 is not imme-
diately applicable because the given formula is restricted to
interval functions. By “interval functions”, we mean func-
tions whose domain is an interval (in our case, the interval
[-1,1]). The function may or may not be continuous, but is
defined everywhere over the interval.

In contrast, the time series is a discrete function, as the
domain is a set, rather than an interval. Specifically, let
the time series be S = 〈(t1, v1), . . . , (tN , vN)〉, where −1 ≤
t1 < . . . < tN ≤ 1. (Recall that time t is normalized into
the range [-1,1].) This can be rewritten in functional form
below:

S(t) =

j
vi if t = ti

undefined otherwise
(1)

To apply Theorem 2, we need to extend the above dis-
crete function into an interval function. We first divide the
interval [−1, 1] into N disjoint subintervals as follows:

Ii =

8<
:

[−1, t1+t2
2

) if i = 1

[
ti−1+ti

2
,

ti+ti+1
2

) if 2 ≤ i ≤ N − 1

[
tN−1+tN

2
, 1] if i = N

(2)

An obvious choice for an interval function would be the
following step function:

g(t) = vi if t ∈ Ii, (for 1 ≤ i ≤ N) (3)

To create an interval function based on the original time
series in Equation (1), the above function defines the previ-
ously undefined parts as follows. Between a pair of succes-

sive time points ti and ti+1, the mid-point
ti+ti+1

2
is used

as a “divider” – the first half retains the value vi, while
the second half adopts the value vi+1. Special attention is
paid to the boundary conditions: t1 with respect to the left
end-point of the interval, and tN with respect to the right
end-point.

While the above function is simple, it does not immedi-
ately satisfy the Lower Bounding Lemma. A key result to be
proven later in this paper is that the lemma is satisfied with
the inclusion of the Chebyshev weight function (defined in
Section 2) and the length of each subinterval:

f(t) =
g(t)p
w(t)|Ii|

if t ∈ Ii (for 1 ≤ i ≤ N) (4)

where g(t) is as defined in Equation (3) and |Ii| is the length
of subinterval Ii.

Because f(t) is an interval function, we can use Theorem 2
to compute the coefficients of the Chebyshev approximation.
Furthermore, for better approximation quality, we can use
all the N data points and values of the time series. Of course,
to reduce dimensionality, we only keep the first n = m + 1
Chebyshev coefficients for indexing. More specifically, we
have the following formulas:

c0 =
1

N

NX
j=1

f(tj)P0(tj) =
1

N

NX
j=1

f(tj) (5)

ci =
2

N

NX
j=1

f(tj)Pi(tj) (6)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
DFT v.s. PAA v.s. APCA v.s. CHEBY approximations

t

x

DFT
PAA
APCA
CHEBY

(a) n = 4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
DFT v.s. PAA v.s. APCA v.s. CHEBY approximations

t

x

DFT
PAA
APCA
CHEBY

(b) n = 8

Figure 2: Comparing Chebyshev Approximation with Other Schemes

for all 1 ≤ i ≤ (n− 1), where the tj ’s are the roots of PN(t)
as defined in Theorem 2.

It should be obvious that the complexity of computing
each ci is O(N). Thus, the total complexity for approx-
imating a time series is O(nN) for computing all the n
coefficients. Because n is intended to be a small constant
(e.g., ≤ 25), the complexity for Chebyshev approximation
can thus be regarded as O(N).

3.3 An Example
Figure 2 shows the time series of the opening stock price of

a Fortune500 company called ALCOA (ticker symbol: AA)
for the period between February 28, 1978 to October 24,
2003 (for a total length of 6480 days). For n = 4, the left
figure shows the original time series, the Chebyshev, the
DFT, the PAA and the APCA approximations. The right
figure shows the approximations for n = 8. The x-axis is
normalized to the interval [-1, 1], and the y-axis is normal-
ized according to the APCA framework.

Notice that for n equal to a power of 2, the PAA approx-
imation is exactly the same as the wavelet transform. Also
note that under APCA, because each piece is not of equal
length, each piece requires two values for storage. Thus, for
n = 8, there are only 4 pieces under APCA, as opposed to
8 pieces under PAA (and 8 coefficients for the Chebyshev
approximation and DFT).

From Figure 2, it is easy to see that the Chebyshev ap-
proximation is different from the others. However, just
based on the naked eye, it is hard to observe the mini-
max property of the Chebyshev approximation. The follow-
ing table shows the maximum deviation under the various
schemes, normalized into the y-range of [-2, 2.5].

Approximation Maximum Maximum
Scheme Deviation (n = 4) Deviation (n = 8)

Chebyshev 1.88 1.84
DFT 2.00 2.09
APCA 2.35 2.23
PAA 2.31 2.28

The second and third column of the table show the sit-
uation for n = 4 and n = 8 respectively. Notice that for
DFT as n increases, there is no absolute guarantee that the
maximum deviation decreases. Indeed, this phenomenon

is shown in the above table. Having said that, the gen-
eral trend is that the maximum deviation decreases as n
increases, as exhibited by the other schemes. In any event,
for both values of n, the maximum deviation of the Cheby-
shev approximation is by far the smallest among the ones
shown.

3.4 A Metric for Chebyshev Coefficients
Given two time series S1, S2, the previous subsection shows

how to compute their corresponding vectors of Chebyshev
coefficients, denoted by �C1, �C2 respectively. The next task is
to define a distance function between the two vectors. Such
a definition depends on the distance function used for the
original time series S1, S2.

In this paper, we adopt the Euclidean distance function
for spatio-temporal trajectories. While this distance func-
tion is simple, it is natural for many applications with spatio-
temporal trajectories, including trajectories for airplanes and
flying objects. It is also the distance function adopted by
most studies on indexing time series, including [11]. For
more advanced distance functions such as time-warping [2]
and longest common subsequence [24], we consider them fu-
ture topics of investigation.

Definition 2. Let S1, S2 be two time series of length
N , and let �C1, �C2 be the corresponding vectors of Cheby-
shev coefficients. Specifically, let �CT

1 = [a0, . . . , am] and
�CT

2 = [b0, . . . , bm]. (T denotes the transpose of the vector.)
Define:

Distcby(�C1, �C2) =

vuutπ

2

mX
i=0

(ai − bi)2

The distance function Distcby is basically a Euclidean dis-
tance function on the coefficients. It is weighted by the con-
stant π

2
for the eventual Lower Bounding Lemma to work

out. The following lemma is easy to establish.

Lemma 1. Distcby is a metric distance function.

3.5 The Lower Bounding Lemma
We are now in a position to establish the Lower Bound-

ing lemma: Distcby(�C1, �C2) ≤ Disteuc(S1, S2). For space

limitations, we omit a full proof of this result. Instead, we
outline below some of the key steps in the proof.

Given S1 = 〈(t1, v1), . . . , (tN , vN)〉, and S2 = 〈(t1, w1), . . . ,
(tN , wN)〉, we consider the time series Z = 〈(t1, v1 − w1),
. . . , (tN , vN − wN)〉. Let zj = vj − wj for all 1 ≤ j ≤ N .
Then it is clear that the Euclidean distance between S1, S2

satisfies the following equality:

Dist2euc(S1, S2) =
NX

j=1

(vj − wj)
2 =

NX
j=1

z2
j (7)

Recall from Section 3.2 how an interval function is defined
for a time series. Let the interval functions corresponding
to S1, S2 and Z be f1, f2 and fZ respectively. The lemma
below is easy to establish by following Equations (3) and (4)
in Section 3.2.

Lemma 2. For all t ∈ [−1, 1], fZ(t) = f1(t) − f2(t).

The above lemma can then be used to establish a use-
ful result for Chebyshev approximation. Let us consider
the Chebyshev approximation of Z based on Equation (6).
Let the corresponding vector of Chebyshev coefficients be
denoted as �CZ . Given that Z is the “difference” between
S1, S2, the following lemma says that the vector of Cheby-
shev coefficients preserves the difference.

Lemma 3. Let �C1, �C2 and �CZ be the vectors of Chebyshev
coefficients for S1, S2 and Z respectively. Specifically, let
�CT

1 = [a0, . . . , am], �CT
2 = [b0, . . . , bm] and �CT

Z = [c0, . . . , cm].
Then for all 0 ≤ i ≤ m, it is the case that ci = ai − bi.

Proof Sketch: In the following, we only focus on ci for
1 ≤ i ≤ m; the situation is almost identical for c0.

ci = 2
N

PN
j=1 fZ(tj)Pi(tj) [Equation (6)]

= 2
N

PN
j=1 [f1(tj) − f2(tj)]Pi(tj) [previous lemma]

= ai − bi [Equation (6)]

�

Based on the above lemma and Definition (2), it is clear
that:

Dist2cby(�C1, �C2) =
π

2

mX
i=0

c2
i ≤ π

2

∞X
i=0

c2
i (8)

At this point, we need to use a known result for Chebyshev
approximation. A function is integrable if it is bounded and
has a finite number of discontinuities. Note that function
g(t) as defined in Equation (3) is integrable, as it is bounded
and has (N − 1) discontinuities. Then the function f(t),
as defined in Equation (4), is l2-integrable with respect to
the Chebyshev weight function. The following lemma thus
applies.

Lemma 4 ([16]). Let ci be the Chebyshev coefficients
for f(t) which is l2-integrable with respect to the Chebyshev
weight function. Then it is the case that:

∞X
i=0

c2
i =

2

π

Z 1

−1

f2(t)√
1 − t2

dt

With this lemma, we can finally put the various pieces to-
gether and conclude with the following theorem.

Theorem 3 (The Lower Bounding Lemma). Let S1,

S2 be two time series, and �C1, �C2 be the corresponding vec-
tors of Chebyshev coefficients. Then:

Distcby(�C1, �C2) ≤ Disteuc(S1, S2)

Proof Sketch:

Dist2cby(�C1, �C2) ≤ π
2

P∞
i=0 c2

i [Equation (8)]

=
R 1

−1

f2
Z (t)√
1−t2

dt [Lemma 4]

=
PN

j=1 |Ij | z2
j

|Ij | [Equation (4)]

=
PN

j=1 z2
j

= Dist2euc(S1, S2) [Equation (7)]

�

Notice that a key step in the above proof is
R 1

−1

f2
Z(t)√
1−t2

dt =

PN
j=1 |Ij | z2

j

|Ij | . This is due to the fact that the integrand is

a step function, and hence stepwise integrable. The result
of the integration at each step is the area under the curve,

which is the width |Ij | multiplied with the height
z2

j

|Ij | , that

is, z2
j .

Furthermore, we can extend the strict Euclidean distance
framework analyzed so far to a weighted Euclidean frame-
work. We need to re-define Disteuc and Distcby to include
weights for the Lower Bounding Lemma to hold. For space
limitations, we omit a proof of this extension.

4. INDEXING MULTI-DIMENSIONAL TRA-
JECTORIES

So far, we have established indexing based on Chebyshev
approximation for 1-dimensional time series. In this sec-
tion, we extend the framework to d-dimensional (d ≥ 1)
spatio-temporal trajectories. Then we present algorithms
for indexing and kNN searches.

4.1 Lower Bounding for The Multi-Dimensional
Case

Let S be a d-dimensional spatio-temporal trajectory of the
form 〈(t1, �v1), . . . , (tN , �vN)〉, where �vi is of arity d. Let the
d dimensions be {Dim1, . . . , Dimd}. Then S is decomposed
into d 1-dimensional series: SDim1 , . . . , SDimd . Let each of
these series SDimi be approximated and represented with

the vector �Ci of Chebyshev coefficients. The vector �Ci is of
arity ni, and need not be of the same arity as �Cj for j �= i.

Finally, let �C be the vector of Chebyshev coefficients for S,
i.e., �CT = [�CT

1 , . . . , �CT
d].

We generalize Definition 2 to give a metric distance func-
tion between two vectors of Chebyshev coefficients for two
d-dimensional trajectories.

Definition 3. Let S, R be d-dimensional spatio-temporal
trajectories. Let their vectors of Chebyshev coefficients be
�CT = [�CT

1 , . . . , �CT
d] and �DT = [�DT

1 , . . . , �DT
d] respectively.

Define:

Distcby(�C, �D) =

vuut dX
i=1

Dist2cby(�Ci, �Di)

Algorithm BuildIndex(DB, Index, n1, . . . , nd) {
/* input: a database DB of M d-dimensional trajectories */
/* input: Index, a multi-dimensional index which may already

contain some entries */
/* input: ni (1 ≤ i ≤ d) denotes the number of Chebyshev

coefficients to be used for the i-th dimension */
/* output: the trajectories approximated and added to Index */
for each trajectory S {

(1) initialize C to be empty
(2) project S to its d dimensions {Dim1, . . . , Dimd}

creating SDim1 , . . . , SDimd

(3) for (1 ≤ i ≤ d) {
(4) apply Equations (3) to (6) to SDimi

(5) add all the computed ni coefficients to C
} /* end for-loop */

(6) insert the coefficients in C as a single
multi-dimensional point into Index

} /* end for-loop */
} /* end algorithm */

Figure 3: Algorithm for Building an Index of Cheby-
shev Coefficients

The following corollary is a simple extension of Theo-
rem 3 generalizing the the Lower Bounding Lemma from
1-dimensional to d-dimensional trajectories. This is because
the d-dimensional distance is based on the sum-of-squares
distances along each dimension.

Corollary 1. Let S, R be d-dimensional spatio-temporal
trajectories, and �C, �D be the corresponding vectors of Cheby-
shev coefficients. Then:

Distcby(�C, �D) ≤ Disteuc(S, R)

4.2 Algorithms for Building and Searching the
Index

Having established the Lower Bounding Lemma in Corol-
lary 1 for the d-dimensional case, we can build an index of
Chebyshev coefficients. Figure 3 shows a skeleton of an al-
gorithm which takes M d-dimensional spatio-temporal tra-
jectories, obtains the Chebyshev coefficients for each tra-
jectory, and inserts the vectors of coefficients into a multi-
dimensional index.

Recall from Section 3.2 that the complexity of step (4)
of the algorithm is O(N), where N is the length of each
trajectory. Thus, it is clear from Figure 3 that building the
index takes O(dMN) time.

Next we consider range and kNN searches. In both cases,
the search is rather straightforward, following the GEMINI
framework [5]. Figure 4 shows a skeleton of the range search
algorithm, and Figure 5 shows a skeleton of the kNN search
algorithm.

5. EXPERIMENTAL EVALUATION

5.1 Data Sets and Programs Used
We conducted an experimental evaluation on many real

data sets. The following table provides a summary of those
reported here.

Algorithm RangeSearch(Q, Index, r) {
/* input: a d-dimensional query trajectory Q */
/* input: the index of Chebyshev coefficients Index */
/* input: a radius r for range search */
/* output: all trajectories within a distance r from Q

with respect to Disteuc */
(1) apply Equations (3) to (6) to obtain the vector of

coefficients for Q
(2) find all trajectories in Index within r of Q using Distcby

(3) retrieve from disk the corresponding (full) trajectories
(4) compute the true distances using Disteuc and

discard all the false positives
} /* end algorithm */

Figure 4: Algorithm for a Range Search

Algorithm kNNSearch(Q, Index, k) {
/* input: a d-dimensional query trajectory Q */
/* input: the index of Chebyshev coefficients Index */
/* input: k a positive integer */
/* output: the k most similar trajectories to Q

with respect to Disteuc */
(1) apply Equations (3) to (6) to obtain the vector of

coefficients for Q
(2) find the k-nearest neighbours to Q in Index using Distcby

(3) retrieve from disk the corresponding (full) trajectories
(4) compute the true distances using Disteuc and

record the maximum max
(5) invoke the range search RangeSearch(Q, Index, max)
(6) retrieve from disk the corresponding (full) trajectories
(7) compute the true distances using Disteuc and

retain the nearest k trajectories
} /* end algorithm */

Figure 5: Algorithm for a kNN Search

Name Dimensionality Number Length
Stocks 1 500 6480
ERP 1 496 6396
NHL 2 5000 256
Slips 3 495 400
Kungfu 3 495 640
Angle 4 657 640

The Stocks data set consists of the daily opening prices
of 500 companies traded in the New York Stock Exchange
for the past 25 years. The data set was obtained from
http://finance.yahoo.com. The ERP data set was provided
to us by Eammon Keogh. Both of these data sets consist of
long 1-dimensional time series.

The NHL data set consists of 5000 National Hockey League
players’ 2-dimensional trajectories, each of length 256 time
points. The trajectories were obtained by digitizing the
Philadelphia Flyers’ hockey games during the NHL 2001-
2002 season. The data were provided to us by an electronic
games company.

The Slips, Kungfu and Angle data sets were obtained from
http://www.e-motek.com/entertainment/index.htm. It is a
company which operates a motion capture facility for use by
electronic game developers and medical professionals. The
Slips data are 3-dimensional positions of body joints of a
person slipping down and trying to stand up. The Kungfu
data are 3-dimensional positions of body joints of a per-
son playing kung fu. Finally, the 4-dimensional Angle data
record the four angles of the body joints of a person playing
kung fu.

The aforementioned data sets vary in dimensionality and
length. But they are rather small in number (not neces-
sarily in total size). To complement the situation so that
scalability can be tested more thoroughly, we implemented
a trajectory generator. Specifically, it uses a simple mixture
contamination model, i.e., Z(t) = (1 − w)p(t) + wN . Z(t)
is the generated 1-dimensional time series. With a proba-
bility of (1 − w) (e.g., w = 0.1), the generated values fol-
low the values of a polynomial p(t) of a specified degree h
(e.g., from 4 to 20). But with a probability w, Gaussian
noise N (0, 1) is introduced. The polynomial p(t) of degree
h has h roots, which are picked randomly within the range
[-1,1]. This polynomial is then expanded and scaled. For
a d-dimensional trajectory, the above generation procedure
is invoked d times to generate the data on each dimension
separately.

We implemented Chebyshev approximation in C++, cor-
responding to Equations (3) to (6). Recall from Figure 2
that there are various well-known schemes for time series in-
dexing. As the study in [11] shows convincingly that APCA
is almost always the best algorithm, we focus our empir-
ical comparison only on APCA. We obtained the APCA
code from Eammon Keogh, for which we are thankful. The
APCA code was implemented in Matlab. We implemented
the BuildIndex, RangeSearch and kNNSearch procedures
shown in Figures 3 to 5.

Finally, many multi-dimensional indexing structures have
been developed. See [6] for a comprehensive survey. For the
results reported here, we used the DR-tree package devel-
oped by Faloutsos and his group.

To come up with a “straw man” algorithm for a compar-
ative analysis for d-dimensional trajectories, we developed
another version of the BuildIndex procedure by replacing
line (4) in Figure 3 with the APCA code. Similarly, we
developed APCA versions of RangeSearch and kNNSearch
procedures by basically replacing line (1) in Figures 4 and 5
with the APCA code.

5.2 Comparison Criteria: Pruning Power and
Search Time

Note that because the APCA code is implemented in Mat-
lab, and line (4) in BuildIndex is looped many times, it is
unfair to compare the execution times of the two BuildIn-
dex procedures directly. However, the situation is different
for the RangeSearch and kNNSearch procedures. Because
line (1) in Figures 4 and 5 is called only once per query, we
did not measure the execution time of this line, but mea-
sured and compared the execution times of the rest of the
procedures. We feel that this is be a fair comparison be-
tween Chebyshev and APCA on their search performance
with indexing taken into account – modulo the time taken
to approximate the initial query.

In addition to the execution times, we also compared the
pruning power of the two schemes. Our definition of prun-
ing power is slightly simpler than the one used by Keogh
et al. [11]. Adopting a branch-and-bound strategy, we used
a sequential scan to conduct a kNN search. Specifically,
let S1, . . . , Sk be the current k-nearest trajectories based on
their real Euclidean distances to query Q. Let maxeuc be the
maximum distance according to these k current best. For
the next trajectory R to be evaluated, we compare maxeuc

with Distcby(�CQ, �CR), where �CQ, �CR denote the vectors of
coefficients of query Q and trajectory R respectively. If

maxeuc is smaller, then by the Lower Bounding Lemma,
R cannot possibly be nearer, thus saving one calculation of
the real Euclidean distance Disteuc(Q, R). Otherwise, the
real distance Disteuc(Q, R) is computed and the current k-
nearest trajectories and maxeuc may need to be updated.
Thus, the pruning power essentially measures the percent-
age of saved real Euclidean distance calculations, as a result
of the approximation. Note that this percentage depends on
the initial k trajectories. To overcome this bias, we define
the pruning power to be the average percentage of saved
calculations over 10 randomly picked queries.

Apart from search times, we feel that it is essential to com-
pare the pruning power for two reasons. First, in a search
time comparison with indexing included, there are bias in-
troduced by implementation details, including the choice of
the indexing structure. A pruning power comparison is free
of those implementation bias. Second, as indexing is in-
cluded in a search time comparison, the dimensionality curse
of the indexing structure may dominate at some point, and
mask the true pruning effectiveness of the approximation
schemes. The latter is best measured directly by a pruning
power comparison.

5.3 Pruning Power Comparison: Real Data
Sets

Figure 6 compares the pruning power of Chebyshev and
APCA approximation. The value of k is 10 (i.e., 10-nearest
neighbours). The figure consists of six graphs, one for each of
the six real data sets. In all cases, the x-axis shows varying
values of n (i.e., the number of coefficients allowed in the
approximation). Notice that because APCA approximates
a trajectory with variable-length pieces, each piece requires
two coefficients. Thus, n = 2 for APCA corresponds to
a single piece, which has little pruning power, and hence
omitted. Furthermore, the APCA code requires that the
length of a trajectory be a multiple of n. Thus, the values
plotted on the x-axes for the six graphs vary from data set
to data set. For example, the NHL trajectories are each of
length 256; the values of n that can be used must be powers
of 2. The y-axis shows the percentage of saved Euclidean
distance calculations.

Let us first take a closer look at the two 1-dimensional
data sets, Stocks and ERP. As expected, as n increases,
the pruning power increases. For the Stocks data, as n
varies from 4 to 20, the pruning power of Chebyshev ap-
proximation increases from around 35% to about 70%. In
contrast, the pruning power of APCA only increases from
8% to 30%. In other words, even if 20 coefficients are used
for the APCA to approximate each trajectory, the pruning
power it delivers is even less than what Chebyshev approxi-
mation can deliver with 4 coefficients. Thus, there is at least
a 5-fold improvement in the dimensionality of the approx-
imation. For the ERP data, as n varies from 4 to 12, the
pruning power of Chebyshev approximation changes from
20% to 35%, whereas that of APCA changes from 10% to
20%. Thus, it takes APCA 12 coefficients to deliver the
same pruning power as 4 Chebyshev coefficients can do.

Let us turn our attention to higher-dimensional trajecto-
ries. Note that the value of n represents the number of co-
efficients for each dimension. For instance, for the graph in
Figure 6(f), n = 20 corresponds to a total of 80 coefficients
used for approximating the given 4-dimensional data. Note
that we are not suggesting that in practice, we should build

(a) 1-D Stocks data (b) 1-D ERP data (c) 2-D NHL data

(d) 3-D Slips data (e) 3-D Kungfu data (f) 4-D Angle data

Figure 6: Pruning Power Comparisons: Real 1- to 4-Dimensional Data Sets

Figure 7: Computing Chebyshev Coefficients

an 80-dimensional index. Rather, we focus here on exam-
ining pure pruning effectiveness, independent of the index
structure. To continue with Figure 6(f), we observe that
it takes APCA 20 coefficients to deliver what 4 Chebyshev
coefficients can deliver, representing a 5-fold difference in di-
mensionality of approximation. Similar observation applies
to the 2-dimensional and 3-dimensional data sets.

5.4 Building Time and the Choice of n

The above discussion focuses on comparing the dimen-
sionality of Chebyshev approximation and APCA. Here we
focus solely on Chebyshev approximation. In all the graphs
shown in Figure 6, the larger the value of n, the higher is
the pruning power. The obvious question to ask then is how
large could n be. There are two key factors. The first fac-
tor is the dimensionality of the index, as the dimensionality

curse on the index structure may put a limit on the value of
n. This issue will be addressed later in Section 5.6.

The second factor is the computation time of Chebyshev
approximation. The key question here is how fast the time
taken to compute the Chebyshev coefficients grows with
respect to n. Figure 7 answers this question for the 1-
dimensional Stocks data, 3-dimensional Kungfu data, and
4-dimensional Angle data. We omit the others to save space,
as the same conclusion can be drawn. The x-axis of the
graph shows varying values of n, and the y-axis shows the
number of seconds in CPU time to compute the Chebyshev
coefficients for all the trajectories. The machine used was an
Intel PC with a single 1.8 GHz processor and 256 Mbytes of
RAM. The timing figures represent averages of 10 randomly
picked queries.

Across the three curves in the graph, the absolute time
taken is not that important, as the time depends on the size
and length of each data set. What is important, however,
is that for each curve, the time taken is shown to be linear
with respect to n, as predicted from the earlier equations.
What is noteworthy is how small the rate of growth turns
out to be, i.e., the slope of the “straight” line. The rea-
son is that as shown in Equation 6, the bottleneck of the
computation of the coefficients is for computing f(tj) for all
1 ≤ j ≤ N . This computation is done only once for all the
n coefficients. The significance of this observation is that
as long as increasing n delivers additional pruning power,
the incremental building cost is not an obstacle at all. Of
course, this does not represent the final verdict on the choice
of n; later in Section 5.6 when indexing is included in our
measurement, we shall return to this issue.

We do not include the building time for APCA here, as
it takes at least an order of magnitude longer. But this is

(a) Chebyshev pruning power (b) APCA pruning power (c) Chebyshev building time

Figure 8: Scalability: Pruning Power and Building Time

not a fair comparison as APCA is implemented in Matlab,
whereas our Chebyshev code is implemented in C++.

5.5 On Scalability: Generated Data
So far, all the empirical evaluations are based on the real

data sets, all of which are small in M , the number of trajec-
tories. Here we used the generated data sets, as described
in Section 5.1. Figure 8 shows a representative situation –
based on a 3-dimensional generated data set with an under-
lying polynomial of degree 10 and trajectory length of 720.
Figure 8(a) and (b) compare the pruning power of Cheby-
shev approximation and APCA. The x-axis shows varying
values of data set size M , and the y-axis shows the percent-
age of saved Euclidean calculations. To avoid crowding the
graph, we only show the situation when n = 6, 12 and 20.

Recall from the earlier pruning power discussion that Cheby-
shev approximation can deliver 3- to 5-fold reduction in the
dimensionality of the approximation. Let us examine the
first two graphs in Figure 8 to see if the same conclusion
can be drawn for larger data sets. Take M = 2000 as the
first example. The pruning power of Chebyshev approxi-
mation using n = 6 coefficients is roughly the same as the
pruning power of APCA using n = 20 coefficients. Similar
observations can be made for all other values of M shown
in the graphs. Thus, this confirms the superiority of Cheby-
shev approximation for both real and generated data sets.

Figure 8(c) shows that the time taken to compute Cheby-
shev coefficients is linear with respect to M . This shows the
scalability of Chebyshev approximation. Furthermore, the
graph shows that there is little difference in time whether
6 or 20 coefficients are being computed, confirming an ear-
lier observation surrounding Figure 7. This shows that the
computation of Chebyshev coefficients is far more affected
by the data set size M than by the number of coefficients n.

5.6 Comparisons with Indexing Included
So far, our discussions have not yet taken into account

of the indexing structure. The comparison between Cheby-
shev and APCA is based on pruning power and sequential
scans. In the remainder of this section, we compare these
two schemes with indexing included – in terms of both I/O
cost and CPU cost. I/O cost, if reported in seconds, may
depend heavily on implementation and experimentation de-
tails, such as buffer space, speed of a random page read, etc.
To eliminate these details, we report I/O cost as the sum of
the number of index nodes/pages accessed and the number
of page reads required to retrieve the specific trajectories

needed by the kNNSearch procedure. We used a page size
of 10Kbytes.

CPU time includes the time taken to naviagate the index
nodes, the time taken to compute the lower bounded dis-
tances Distcby(�CQ, �CS), and the time taken to compute the
real Euclidean distances Disteuc(Q,S), whenever needed.
As discussed before, the time taken to perform the initial
approximation of the query is not included, due to the fact
that the APCA code is written in Matlab. Even though the
exact CPU time is highly dependent on the size of the data
set and the length of the trajectories, the CPU time can at
least be used as a relative measurement between Chebyshev
and APCA. Like the figures reported on pruning power, the
timing figures reported here on I/O and CPU costs represent
the averages over 10 randomly picked queries.

5.6.1 I/O Cost Comparison
Figure 9 shows the I/O and CPU costs for the Stocks

data, the Kungfu data and the 3-dimensional generated data
with 10,000 trajectories each of length 720. (The results for
the others are not shown for space limitations.) The x-axis
of the graphs shows the number of coefficients used, n, for
each dimension. For graphs (a) to (c), the y-axis shows the
I/O cost in page accesses. Given the differences in length
and number of trajectories in each data set, the absolute
values in graphs (a) to (c) are relatively unimportant; what
is important are the curves within each graph.

For the 1-dimensional Stocks data in graph (a), the re-
duction in page accesses as n increases flattens off for n
beyond 16. For the 3-dimensional Kungfu data in graph
(b), the number of page accesses reaches a minimum for
n = 8, corresponding to a 24-dimensional index. Beyond
that, the dimensionality curse on the index structure sets
in, and the number of total page accesses starts to rise.
For the 3-dimensional generated data in graph (c), there
is not yet any observed increase in total page accesses be-
yond n = 8. However, recall that total page accesses come
from two sources: the number of data pages and the number
of index nodes/pages. As n increases, the former decreases
due to the increase in pruning power. In contrast, the latter
goes up due to increasing dimensionality, and accounts for
a larger and larger percentage of total page accesses. Even-
tually, the latter dominates the former.

Dimensionality curse aside, the number of page accesses
required by Chebyshev approximation in all cases is about
50% to 60% that of APCA. This improvement is highly con-
sistent with the pruning power results shown earlier in Fig-

(a) 1-D Stocks data: I/O cost (b) 3-D Kungfu data: I/O cost (c) 3-D Generated data: I/O cost

(d) 1-D Stocks data: CPU time (e) 3-D Kungfu data: CPU time (f) 3-D Generated data: CPU time

Figure 9: Search Time Comparison: Indexing Included

ure 6 and Figure 8.

5.6.2 CPU Cost Comparison
For graphs (d) to (f), the y-axis shows the CPU time taken

(in seconds) of the entire kNNSearch. Within each graph,
we show the times taken by Chebyshev and APCA, with
indexing included. Furthermore, whenever the sequential
scan strategy (as described in Section 5.2) becomes com-
petitive, the timing figures for scans are included as well.
The key difference between indexing and sequential scans
is that with the former, the dimensionality curse on the in-
dexing structure sets in sooner or later. In graph (d), for
the 1-dimensional Stocks data, the minimum CPU time oc-
curs when n = 20. But for the 3-dimensional Kungfu and
generated data in graphs (e) and (f), the minimum CPU
time occurs when n = 4 or n = 6 (corresponding to a 12-
dimensional or 18-dimensional index). And if the total time
is considered by summing up the CPU and I/O costs, the
best situation is when n = 6.

As expected and consistent with the literature [25], our
sequential scan strategy starts to dominate indexing. For
graphs (e) and (f), this occurs when n = 10. As our sequen-
tial scan strategy is not optimized, it is conceivable that
a more optimized sequential scan procedure may dominate
even earlier. Recall from Figure 6 that the pruning power
continues to grow beyond n = 8. Thus, it is important to
include sequential scans as a viable alternative to indexing
for spatio-temporal trajectories.

For the comparison between Chebyshev and APCA, again
the former dominates in CPU time taken. This is consis-
tent with all the previous comparisons on pruning power
and I/O cost. But besides pruning power, there is an ad-
ditional reason why the CPU time for Chebyshev is lower

than that for APCA. As defined in Definition 2, the com-
putation of the distance between two vectors of Chebyshev
coefficients is O(n). However, based on the distance measure
given in [11], the corresponding computation between two
vectors of APCA coefficients is in fact O(N), which requires
extra CPU time.

Recommendations: In closing, we make the following
suggestions regarding indexing for d-dimensional trajecto-
ries. They are based on the DR-tree we used and should
be adjusted depending on the choice of the index structure.
For 1-dimenionsional, using n = 20 Chebyshev coefficients
appears to be the best. For 2-dimenisonal, the suggested
value of n is 8-12 for each dimension. The correspond-
ing suggestion is 4-6 for 3-dimensional trajectories. And
finally 4 coefficients for each dimension are recommended
for 4-dimensional trajectories. For higher dimensionality, or
for additional pruning power, sequential scan using a higher
number of Chebyshev coefficients is recommended.

6. CONCLUSIONS
In this paper, we explore how to apply Chebyshev polyno-

mials for approximating and indexing d-dimensional spatio-
temporal trajectories. Chebyshev polynomials enjoys the
property that they are almost identical to the minimax poly-
nomials; yet they are easy to compute. Computing Cheby-
shev coefficients is linear with respect to the data set size
M , as well as the trajectory length N . Our experimental
results further shows that computing extra Chebyshev coef-
ficients takes negligible time (i.e., increasing n incurs little
extra cost).

In order for Chebyshev approximation to be used for in-
dexing, a key analytic result of this paper is the Lower

Bounding Lemma. To achieve this result, we need to ex-
tend a discrete trajectory into an interval function, so that
Chebyshev approximation becomes applicable. We also need
to define a distance function between two vectors of Cheby-
shev coefficients.

To evaluate the effectiveness of the minimax property of
Chebyshev polynomials on indexing, we conducted an exten-
sive experimental evaluation. From 1- to 4-dimensional, real
to generated data, Chebyshev dominates APCA in pruning
power, I/O and CPU costs. Our empirical results indicate
that Chebyshev approximation can deliver a 3- to 5-fold re-
duction on the dimensionality of the index space. That is, it
only takes 4 to 6 Chebyshev coefficients to deliver the same
pruning power produced by 20 APCA coefficients. This is
a very important advantage. As the dimensionality curse
on the indexing structure is bound to set in sooner or later,
Chebyshev coefficients are far more effective than APCA in
delivering additional pruning power before that happens.

In ongoing work, we would like to extend the Lower Bound-
ing Lemma to other distance functions, such as the dynamic
time-warping distance [2] and the longest common subse-
quence distance [24]. We would also like to expand our
framework to conduct sub-trajectory matching. The fixed-
window strategy proposed in [5] is applicable; yet we seek
to exploit properties of Chebyshev approximation for fur-
ther optimization. The experimental results reported here
are based on using the same number of coefficients for each
dimension. In ongoing work, we would explore how to allo-
cate a fixed number of Chebyshev coefficients to the d dimen-
sions according to the “need” of each dimension. Finally, we
would explore how to develop an optimized sequential scan
algorithm to use in conjunction with Chebyshev coefficients.

7. REFERENCES
[1] R. Agrawal, K. Lin, H. Sawhney and K. Shim. Fast

Similarity Search in the Presence of Noise, Scaling
and Translation in Time-series databases. Proc. 1995
VLDB, pp. 490-501.

[2] D. J. Berndt and J. Clifford. Using dynamic time
warping to find patterns in time series. Working
Notes of the Knowledge Discovery in Databases
Workshop, pp. 359–370, 1994.

[3] K. Chakrabarti and S. Mehrotra. Local
Dimensionality Reduction: a new approach to
indexing high dimensional spaces. Proc. 2000 VLDB.

[4] K. Chan and A. Fu. Efficient Time Series Matching
by Wavelets. Proc. 1999 ICDE, pp. 126-133.

[5] C. Faloutsos, M. Ranganathan and Y. Manolopoulos.
Fast Subsequence Matching in Time-Series
Databases. Proc. 1994 SIGMOD, pp. 419-429.

[6] V. Gaede and O. Gunther. Multidimensional Access
Methods. ACM Computing Survey, 30, pp. 170– 231,
1998.

[7] D. Gunopulos and G. Das. A Tutorial on Time Series
Similarity Measures and Time Series Indexing. Proc.
2001 SIGMOD.

[8] M. Hadjieleftheriou, G. Kollios, V. Tsotras, D.
Gunopulos. Efficient Indexing of Spatiotemporal
Objects. Proc. 2002 EDBT, pp. 251-268.

[9] T. Kahveci and A. Singh. Variable length queries for
time series data. Proc. 2001 ICDE.

[10] K. V. R. Kanth, D. Agrawal and A. Singh.

Dimensionality reduction for similarity searching in
dynamic databases. Proc. 1998 SIGMOD, pp. pages
166–176.

[11] E. Keogh, K. Chakrabarti, M. Pazzani and S.
Mehrotra. Locally adaptive dimensionality reduction
for indexing large time series databases. Proc. 2001
SIGMOD, pp. 151–162.

[12] E. Keogh, K. Chakrabarti, M. Pazzani and S.
Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases.
Journal of Knowledge and Information Systems,
2000, pp 263-286.

[13] E. Keogh and P. Smyth. A probabilistic approach to
fast pattern matching in time series databases. Proc.
1997 KDD, pp. 20–24.

[14] G. Kollios, D. Gunopulos and V. Tsotras. On
Indexing Mobile Objects. Proc. 1999 PODS, pp.
261–272.

[15] F. Korn, H. Jagadish and C. Faloutsos. Efficiently
supporting ad hoc queries in large datasets of time
sequences. Proc. 1997 SIGMOD, pp. 289-300.

[16] J. C. Mason and D. Handscomb. Chebyshev
Polynomials. Chapman & Hall, 2003.

[17] C. S. Perng, H. Wang, S. R. Zhang, and D. S. Parker.
Landmarks: a new model for similarity-based pattern
querying in time series databases. Proc. 2000 ICDE.

[18] I. Popivanov and R. Miller. Similarity Search Over
Time Series Data Using Wavelets. Proc. 2002 ICDE.

[19] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.
T. Vetterling. Numerical Recipes: The Art of
Scientific Computing. Cambridge University Press,
1986.

[20] D. Rafiei and A. Mendelzon. Efficient Retrieval of
Similar Time Sequences Using DFT. Proc. 1998
FODO.

[21] N. Roussopoulos, S. Kelley and F. Vincent. Nearest
Neighbor Queries. Proc. 1995 SIGMOD.

[22] S. Saltenis and C. Jensen. Indexing of Moving
Objects for Location-Based Services. Proc. 2002
ICDE.

[23] H. Shatkay and S. Zdonik. Approximate queries and
representations for large data sequences. Proc. 1996
ICDE, pp. 546–553.

[24] M. Vlachos, G. Kollios and D. Gunopulos.
Discovering similar multidimensional trajectories.
Proc. 2002 ICDE.

[25] R. Weber, H. Schek, and S. Blott. A Quantitative
Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional
Spaces. Proc. 1998 VLDB, pp. 194-205.

[26] O. Wolfson, B. Xu, S. Chamberlain and L. Jiang.
Moving objects databases: Issues and solutions.
Proc. 1998 SSDBM, pp. 111-122.

[27] Y. Wu, D. Agrawal and A. Abbadi. A Comparison of
DFT and DWT based Similarity Search in
Time-Series Databases. Proc. 2000 CIKM, pp.
488-495.

[28] B. Yi and C. Faloutsos. Fast Time Sequence Indexing
for Arbitrary Lp Norms. Proc. 2000 VLDB.

