Available online at www.sciencedirect.com

. :) The Journal of
: ScienceDirect Systems and
XA Software
ELSEVIER The Journal of Systems and Software 80 (2007) 17261745

www.elsevier.com/locate/jss

SQUIRE: Sequential pattern mining with quantities ™

Chulyun Kim ?, Jong-Hwa Lim °, Raymond T. Ng ¢, Kyuseok Shim **

School of Electrical Engineering and Computer Science, Seoul National University, Kwanak, P.O. Box 34, Seoul, Republic of Korea
® Department of Computer Science, KAIST, Taejeon, Republic of Korea
¢ Department of Computer Science, University of British Columbia, Vancouver, Canada

Received 23 March 2006; received in revised form 3 December 2006; accepted 7 December 2006
Available online 14 January 2007

Abstract

Discovering sequential patterns is an important problem for many applications. Existing algorithms find qualitative sequential pat-
terns in the sense that only items are included in the patterns. However, for many applications, such as business and scientific applica-
tions, quantitative attributes are often recorded in the data, which are ignored by existing algorithms. Quantity information included in
the mined sequential patterns can provide useful insight to the users.

In this paper, we consider the problem of mining sequential patterns with quantities. We demonstrate that naive extensions to existing
algorithms for sequential patterns are inefficient, as they may enumerate the search space blindly. To alleviate the situation, we propose
hash filtering and quantity sampling techniques that significantly improve the performance of the naive extensions. Experimental results
confirm that compared with the naive extensions, these schemes not only improve the execution time substantially but also show better

scalability for sequential patterns with quantities.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Data mining; Knowledge discovery; Sequential pattern mining

1. Introduction

Discovering sequential patterns is a rather well-studied
area in data mining and has found many diverse applica-
tions, such as basket analysis, telecommunications, etc.
(Agrawal and Srikant, 1995; Mannila et al., 1997). While
existing studies have considered several variations, which
will be discussed later, the basic form of a sequential pat-
ternis (s,...,S,,), wheres; = {i;1,...,i;, } is a set of items.
Note that sequential patterns of this form are essentially
qualitative in nature, as there is no quantitative informa-
tion associated with each item i;,. However, many applica-
tions do have quantitative information recorded in the data

* This work was supported by the Ministry of Information and
Communication, Korea, under the College Information Technology
Research Center Support Program, grant number IITA-2006-C1090-
0603-0031.
* Corresponding author. Tel./fax: +82 2 880 7269.
E-mail address: shim@ee.snu.ac.kr (K. Shim).

0164-1212/§ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2006.12.562

(e.g., relational data for business, scientific data). Quantita-
tive information is simply ignored in the current form of
sequential pattern mining.

In this paper, we formulate the problem of mining
sequential patterns with quantities. That is, each item i;;
is represented as a pair [i;, ¢;«), where the number of units
of i;; is between 0 and ¢;,. We argue that quantitative
sequential patterns of this kind provide meaningful infor-
mation that is otherwise not reported by qualitative
sequential patterns.

In market basket data, assume that we have quantitative
sequential pattern, ([short_pants,3))([jacket,2], [knit_swea-
ter,4]) which tells that a customer who purchased up to 3
short pants, may later buy up to 2 jackets and 4 knit sweat-
ers together. Such a quantitative pattern may be very useful
for many decisions. For instance, the company may decide
to launch a sales promotion by sending coupons to custom-
ers who purchased short_pants. This quantitative pattern
indicates that those customers may be interested in cou-
pons on jacket and knit_sweater, and the specific quantities

mailto:shim@ee.snu.ac.kr

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745 1727

help the company to design the promotion appropriately.
In this paper, we make the following contributions:

e We introduce the problem of mining for maximal quan-
titative sequential patterns. To this end, we propose two
naive algorithms; Apriori-QSP is an extension of the
Apriori algorithm and PrefixSpan-QSP is an extension
of the PrefixSpan (Pei et al., 2001). These algorithms
represent the two types of algorithms for finding quali-
tative sequential patterns. However, these straightfor-
ward algorithms are inefficient in several ways.

e We propose two optimizations: hash filtering and quan-
tity sampling. We show that both heuristics are sound.
These two optimizations are incorporated into both
Apriori-QSP and PrefixSPan-QSP and we call them
Apriori-All and PrefixSpan-All respectively. Table 1
summarizes these algorithms for mining maximal
sequential patterns with quantities.

e We present preliminary experimental results showing
that Apriori-All outperforms Apriori-QSP by at least
an order of magnitude. In addition, PrefixSpan-All
always performs faster than PrefixSpan-QSP. Between
Apriori-All and PrefixSpan-All, we found that the win-
ner varies as the characteristic of data sets changes.

1.1. Patterns from a real-life data set

To demonstrate the usefulness of mining sequential pat-
terns with quantities, we conducted a real-life case study.
We used a market basket dataset for the period of six
months obtained from a Korean online marketplace com-
pany. To restrict our attention to items with multiple quan-
tities, we considered (1) only the items which were
purchased in multiple quantities by at least a customer,
and (2) only the transactions in which there is at least an
item with multiple quantity. In the reduced dataset, the
number of customers and the number of items are
559,056 and 157,849 respectively. Below, we show a few
interesting frequent patterns with the minimum support
0.01%. To protect confidential and proprietary information
of the company, actual product names are encoded.

e (([J,5]T,1))): This pattern says that 5 units of J are
often co-purchased with one unit of 7. According to this
pattern, the company may promote a package consisting
of 5 items of J and an item 7.

e ([B,1]U,3)): This pattern says that after one unit of B
was bought, it is often that three units of U will be pur-

Table 1
Our algorithms for mining maximal sequential patterns with quantities

Algorithms Sequential patterns With hash filtering and
with quantities quantity sampling
Apriori-style Apriori-QSP Apriori-All

PrefixSpan-style PrefixSpan-QSP PrefixSpan-All

chased by the same customer. (The maximum elapsed
time between the two purchases is upper-bounded by
the life span of the dataset.) The company may use this
pattern to conduct a target promotion to those custom-
ers who bought an item of B.

e ([S,4]S,3]S,4)): This pattern shows that the item S is
repeatedly purchased with similar quantities by a cus-
tomer. Beyond its value for sales and promotion, this
pattern may be useful for inventory management.

The paper is organized as follows. In the next section,
we present related work. In Section 3, we give preliminary
definitions and formally introduce the problem of mining
for maximal quantitative sequential patterns. In Section 4
and Section 5, we introduce Apriori-QSP and PrefixSpan-
QSP respectively. We present the hash filtering and
quantity sampling optimizations. We also show how to
incorporate both optimizations into Apriori-QSP and Pre-
fixSPan-QSP. In Section 6, we present preliminary experi-
mental results. Finally, we make concluding remarks in
Section 7.

2. Related work

Existing algorithms mining qualitative sequential pat-
terns can be broadly divided into two categories, depending
on the order in which the patterns are generated. If we
represent all mined sequential patterns in a prefix tree
structure, then these patterns can be generated in a
breadth-first manner or a depth-first manner. A breadth-
first algorithm discovers patterns of the same depth within
the same iteration of the algorithm. In other words, pat-
terns of depth 1 are first computed, followed by patterns
of depth 2, and so on. This is the well-known Apriori style.
Previous studies following this style include Agrawal and
Srikant (1995), Agrawal and Srikant (1996) and Mannila
et al. (1997). A depth-first algorithm assumes that there is
an ordering among items. This ordering is followed when
items are processed and patterns are generated in a
depth-first manner. The PrefixSpan algorithm in Pei et al.
(2001) belongs to this category. SPADE proposed in
Zaki (2001) can use both breadth-first and depth-first
methods.

There are other extensions to the qualitative sequential
pattern mining problem. In Agrawal and Srikant, 1996, a
taxonomy of items are considered and efficient algorithms
are proposed. The SPIRIT algorithms in Garofalakis
et al. (1999) discover all sequential patterns satisfying reg-
ular expression constraints given by the user. Mining
sequential patterns with constraints is also studied in Pei
et al. (2002). Incremental mining of sequential patterns
are investigated in Cheng et al. (2004).

Mining association rules can be viewed as a special case
of mining qualitative sequential patterns. Algorithms for
association rule mining can also be classified as breadth-
first or depth-first. The Apriori algorithm initially pro-
posed in Agrawal and Srikant (1994) and Srikant and

1728 C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

Agrawal (1995) is an example of a breadth-first algorithm.
The performance of the algorithm can be enhanced by
hashing candidate itemsets of size two (Park et al., 1995).
Examples of depth-first algorithms include DepthProject
(Aggarwal et al., 2000) and FP-Tree (Han et al., 2000).
While all these algorithms find all frequent itemsets, one
way to speed up the execution time is to restrict the discov-
ery to closed or maximal frequent sets. Examples include
Bayardo (1998), Pasquier et al. (1999), Gouda and Zaki
(2001) and MAFTA (Burdick et al., 2001). Closed sequen-
tial patterns are discussed in Yan et al. (2003).

Last but not least, finding association rules for numeric
attributes and interval data has been studied. Examples
include Srikant and Agrawal (1996), Fukuda et al. (1996)
and Miller and Yang (1997). Given the minimum support
threshold as the constraint, the key technical objective of
these studies is to search for the largest ranges or intervals
(o1, irigns] satisfying the constraint. To find sequential pat-
terns with quantities, our approach here is similar in that
we try to maximize the width of the range. However, unlike
numeric association rules, the left boundary of a range is
fixed to 1 in our work (ie., i =1). Thus, instead of
searching for the values of i,; and i, we only have
one variable, namely i, to maximize. We show in this
paper that even with this simplification, the processing is
non-trivial, and yet there are natural applications. In future
work, we will attempt to generalize the current framework
to allow the left boundary to vary.

3. Problem formulation

Let I={i,i,,...,i,} be a set of all items. An extended
item is represented by an item and a quantity, i.e., [i,n]
where i € I and the number of units of i is between 1 and
n. Note that we can easily extend n to be a positive real
number; for simplicity, here we assume that » is an integer.

The number of distinct quantities per item is finite. The
quantity values of an item i are represented by N, =
{ni,ni,,...,n;} in increasing order. We denote a set of
extended items by EI = {[i,n]li € IAn € N;}. An extended
itemset eis is a subset of EI where there does not exist a pair
of elements having the same item.The subset relationship
between eis and EI is denoted by eis C, EL

Given extended itemsets eis; = {ay,as,...,a,} and
eis, = {by,b,,...,b,,}, eis; is called a subset of eis, (denoted
by eis; C eis,) if, for every a;, there exists by such that g; is
of the form [i,q,], by is of the form [i, ¢,], and g, < ¢p.

For instance, given eis; = {[a,3], [d,10]} and eis, =
{[a,4], [c,1], [d,10]}, we have eis; C eis,. However, for
eis; = {[a, 3], [d,10]} and eis, = {[a,4], [c, 1], [d,5]}, we do
not have any subset relationship since the quantity of the
last item in eis, is 5 and is less than the quantity of the last
extended item of eis.

A sequential pattern is an ordered list of extended item-
sets. We denote a sequential pattern s by (s;s5 ... s;) where
s; is an extended itemset (i.e. 5; C, EI for 1 <j < /) and is
also called an element of the sequential pattern. We repre-

sent an element of a sequential pattern by (x;x, ... x,,)
where x; € EI for 1 <k <m. For brevity, when there is
only one extended item (x) (i.e. m = 1), we represent this
as x without parentheses. Let the total number of extended
items in a sequential pattern be the length of the sequential
pattern and we represent the sequential pattern with the
length of / as [-sequential-pattern. Given the sequential pat-
terns o = (aja ... a,) and f=(b1by... b,), a={aa...
a,) is called a subpattern of = (b1b, ... b,,) if there exist
integers ji,j2,...,j» such that a; Cb;,a, Ch,...,
a, Cb; for 1<jy<jp<---<j,<m. We also call f a
superpattern of o and represent this as o C f5.

A sequence database, S, is a set of tuples that consists of
a sequence id sid and a sequence 5. We denote a sequence s
by (s15,...s;) where s; is an element of the sequence. We
represent an element of a sequence by (x1x>...Xx,) In
which x; is the form of [i: gzy] where i is an item and gty
is the quantity sold for 1 < k < m.

We do not use the square-subset definition right here.
Instead, we define directly that a sequence element [d : 1]
supports an extended itemset [d,m] if and only if we have
n<m. We can generalize this to multiple elements and
items naturally. With this consideration, all sequences in
a sequence database can be represented as sequential pat-
terns. We denote the sequential pattern representation of
a sequence s as p(s).

If a sequential pattern o is a subpattern of the sequential
pattern form p(s) of a sequence s (i.e. o C p(s)), a tuple
(sid, s) is said to contain a sequential pattern o. The support
of a sequential pattern o is the number of tuples that con-
tain o in the sequence database. In other words, we have
supports(a) = |{(sid, s)|((sid,s) € S) A (¢ C p(s))}|. When-
ever no confusion arises, we simplify the notation by using
support(a.).

Given a minimum support threshold £, a sequential pat-
tern o satisfying supportg(a) = ¢ is called a frequent
sequential pattern in the sequence database S. A frequent
sequential pattern is maximal if it has no frequent super-
pattern. A frequent sequential pattern with the length of /
is called /-pattern. Finally, the problem we are addressing
in this paper is formulated as follows:

Given a sequence database S and a minimum support
threshold ¢&, find all the frequent maximal sequential
patterns satisfying supports(o) = E.

4. Apriori-QSP and the two optimizations
4.1. Apriori-QSP and a running example

In each pass of the conventional Apriori algorithm for
sequential pattern mining, we use the frequent patterns
from the previous pass to generate the candidate patterns
and then measure their support by making a pass over
the sequence database. At the end of each pass, the support
of the candidates is used to determine the frequent
patterns.

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745 1729

Let us consider the case for minimum support of 3 for
the sequence database in Fig. la. Throughout this paper,
we represent each sequence as the sequential pattern form
mentioned in previous section. Thus, the notation [d,3]
denotes that three units of item d were purchased. Assume
that we are in the process of generating candidate sequen-
tial 2-patterns from frequent sequential 1-patterns in con-
ventional qualitative sequential pattern mining, i.e.,
ignoring the quantities for now. If we have two distinct fre-
quent items ¢ and d, we produce 3 candidate sequential pat-
terns: (cd), ((cd)), (dc). The frequent maximal patterns are
(by, {f), {d(ac)). The detailed description of Apriori-style
algorithms can be found in Agrawal and Srikant (1995)
and Agrawal and Srikant (1996).

In order to extend the conventional Apriori algorithm to
handle quantities, we have to modify the candidate gener-
ation and counting phases to use extended items. Hereafter
we call this algorithm Apriori-QSP, which is presented in
Fig. 2. Each pass consists of candidate generation and
counting in which subsequence pattern checking with
extended items is used. The candidate generation phase
consists of join and pruning steps. The candidate extended
k-patterns C* are generated with the apriori-gen function
by using frequent extended (k — 1)-patterns F*~! found in
the (k — 1)th pass. Given frequent (k — 1)-patterns, o and
B, if the subpattern obtained by removing the first extended
item from o and the subpattern obtained by deleting the
last extended item from f are identical, we produce candi-
date k-patterns by appending o with the last extended item
of f. If the appended item is a single element in f3, it is
appended as a single element in the extended candidate pat-
tern. Otherwise, it is appended to the last element of «.

Any candidate k-pattern that has at least a single unfre-
quent (k — 1)-subpattern is pruned. As an example, let us
consider the patters ([a,2]b,3]) and ([b,3]c,2]). Because
the last element of the latter pattern is a single item, it is
added as a single extended item element in the new
extended candidate patterns and results in ([a,2]b,3]c,2]).
However, for the patterns ([a,2]b,3]) and (([b,3]c,2])),
[c,2] in the latter pattern is located as an item in

a|[Sequence id p(Sequence)
1 ([d, 3](la, 3][c, 1])[f, 1])
2 (la, 2]([b, 2][e, 21[f, 5])([d, 2][f, 2]))
3 (([b,2][d, 1])[c, 3])
4 (([e, 4][d, 3])([a, 2][c, 4][f, 5]))
5 (([d, 5][f, 3])([a, 2][b, 3]) e, 1][c, 4])
6 (([c, 6][f, 5D)[d, 5] ([a, 3][c, 4]))

b [Ttem Quantities || Item | Quantities ‘

a |23 b |23
[¢ 1,3,4,6 d 1,2,3,5
e |12 £ 1,235

Fig. 1. A running example. (a) Sequence database, and (b) Items and their
quantities.

Procedure Apriori-QSP(DB)
begin
1. F':= { Frequent l-length patterns }

2. for (k= 2; Fk_lsé@; k++) do {

3. C* := apriori-gen(F*~1)

4. counting-support(DB, C*)

5. F* .= { z|x € C* A z.sup > minsup }

6. F*=1 .= pruning-non-maximal(F*~!, F*)
7.

8. F*=! .= pruning-non-maximal(F*~!, F*)

9. return UkF'“

end

Fig. 2. The Apriori-QSP.

([b, 3][c 2]), the extended candidate pattern becomes
([a,2)[5.31c. 2)).

Next the sequence database is scanned and the support
of candidates in C* is counted. The candidate patterns
whose support are at least the given minimum support
become the frequent extended patterns F¥. We then prune
non-maximal extended patterns from F*~! by prune-non-
maximal function using F*. In the prune-non-maximal func-
tion, we remove subpatterns in 7! using both F<~! and
F*. For fast pruning, we use a hash table and a hash tree
in the prune-non-maximal.

Consider the minimum support of 3 with the sequence
database in Fig. la. The detailed steps of Apriori-QSP
including candidate patterns, frequent patterns and fre-
quent maximal patterns for each iteration are illustrated
in Fig. 3. We also put the number of candidate patterns
generated in the figure. For example, there are 198 candi-
date patterns with the length of two.

Though Apriori-QSP handles quantities and extended
items, it is inefficient in many ways in how candidate pat-
terns are generated. In the rest of this section, we show
the heuristics to optimize candidate generation. In Section
4, depth-first approaches, which do not require the genera-
tion of candidates to compute quantitative sequential pat-
terns, will be developed. And in Section 5, the effectiveness
of all the heuristic algorithms will be evaluated.

4.2. Hash filtering

Since the number of candidate patterns generated by
Apriori-QSP is significantly large, we look for the ways
of reducing the number of candidate patterns. One specific
weakness of the candidate generation of Apriori-QSP is
that it includes all possible quantity values for an item even
though the item with a single quantity may not be frequent.

For example, consider Fig. 3. The candidate pattern
(([a,2][b,2])) is generated because ([@,2]) and ([b,2]) are fre-
quent patterns of length 1. However, notice that, if we
somehow know that the pattern {(([a, 1]b,1])) is not fre-
quent, then we could prune the generation of the candidate
(([a,2][b,2])). To support this kind of pruning, we propose
to use hash-filtering technique. The hash-filtering technique
runs the conventional Apriori algorithm, first ignoring

1730

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

Length Candidate Patterns Frequent Patterns Freq. Max. Patterns
12
([a, 2]}, {[b,2]), ([c,1]), (le,3]), ([c,4]), ([d,1]), ([d,2]),
: A (i3] {[£.11). (LF-2D0. (1£.30). {[£.5]) {52, {720
198 13
UL | e e e
b, 1 c 1 ¢ 3 1][c, 4 2][e, 1
2 ([b, 2][a 20),.. e T A Ay S L Al (Id, 3][c, 4])
(1, 3][£.5]), (([d, 3][f7 5))), <[d 2)[e, 3]), ([d,][i[;]g][(c[dv]?;”cv 1), ([d, 3][c, 3]),
(1f.5]ld, 3]) T
3 3
([d,1]([a, 2][e, 1])),
3 (. 2)(la.2lfc. 1)), B T i (14, 3)(1a. 2fe, 1)
(14, 3]([a, 2][c, 1])) T

Fig. 3. Candidate and frequent patterns by Apriori-QSP.

quantities to find out sequential patterns. This step is called
the filtering step. The extended item [i,n;] is called a basic
extended item if i is an item and n;, is the smallest value
of quantities for i. If we ignore quantities in the sequence
database and use the conventional sequential pattern min-
ing algorithm, the set of frequent patterns found is the same
as the set of frequent patterns with basic extended items.
Then we enumerate candidate patterns by putting all possi-
ble quantity values to the frequent patterns generated in the
filtering step. This step is called the quantity-counting step.

As an example, the frequent basic patterns with the
length of 2 for the sequence database in Fig. 1 are {(ac)),
(da) and (dc). The sets of quantity values of frequent pat-
terns for the items a, ¢ and d are {2}, {1,3,4} and {1,2,3}
respectively. Thus, with the frequent basic patterns (dc),
the set of candidate patterns generated are ([d,1]c,3]),
([d, 1T[c.4]). ([d. 2T e, 1), ({d,2)e, 3)). {[d, 2]e. 4. ({d.3]e, 1),
([d,3]¢,3)) and ([d,3]c,4]). Note that we do not include
([d,1][c,1]) here since we have generated (dc) as one of
the frequent basic patterns in the filtering step, and (dc)
represents ([d, 1][c,1]) implicitly.

The algorithm Apriori-Hash that uses hash-filtering is
illustrated in Fig. 4. In a subpattern pass k, we first gener-
ate the candidate basic extended patterns C* using only the
frequent basic extended patterns F*!, and count their sup-
port. Then, we enumerate candidate patterns by putting all
possible quantity values to the frequent basic extended pat-
terns F*. We call these patterns enumerated from x the
proper superquantity patterns of x. By counting the sup-
port of each candidates, we can find all frequent extended
patterns. We also prune all non-maximal patterns from
F*! at each pass, thus Apriori-Hash returns all frequent
maximal extended patterns.

Let us consider the example illustrated in Fig. 1 with the
minimum support of 3. The candidate patterns in the filter-
ing step and the counting step are presented in Fig. 5.
When we compute the patterns with the length of 1, we
do not use the filtering step, but compute them by a single
I/O scan. For the length of 2, we produce 35 candidate pat-
terns to find out frequent 2-patterns, and 12 candidates in
the counting step, resulting in 47 candidate patterns as

Procedure Apriori-Hash(DB)

begin

1. F':= { Frequent 1-length patterns }

2. F':={z|z € F' Az is a basic extended pattern }
3. for (k=2; F* 1 #0; k++) do {

4. C* := apriori-gen(F*™1)

5. counting-support(DB, C*)

6 F* .= { x|z € C* A z.sup > minsup }

7 C* := { yly is @’s proper superquantity pattern where z € F* }
8. counting-support(DB, C*)

9. F* .= F* U { z|]z € C* A z.sup > minsup }
10. F* = plruning—non—maximal(F’“’17 Fk)

11. }

12. F*=! .= pruning-non-maximal(F*~*, F¥)

13. return Uka

end

Fig. 4. The Apriori-Hash.

shown in Fig. 5. We generate 3 candidate patterns for the
length of 3. Note that the number of candidates generated
for the length of 2 with hash-filtering is reduced signifi-
cantly from 198 to 47.

Generalizing from the example, the following lemma
shows that hashed filtering cannot increase the number of
candidate patterns.

Lemma 4.1. The number of candidate patterns examined
with hash-filtering is at most the number of candidate
patterns examined without it.

Proof. Let the set of candidate patterns with hash-filtering
be C; and that without hash-filtering C,. C; can be repre-
sented by a union of Cgy, and C,,,, Where Cpype, is the
number of candidate patterns in the filtering step and C,,,,,,
is the number of candidates in the quantity-counting step.
Since we do not re-generate candidate patterns considered
in the filtering step, we have Cpyer N Cepune = 0. We also
have Cpyer € C; and Cpuny € G, that results in C; C Co.
ThllS, we have |Cﬁller| + |Ccounl| = |C1| < |C2| U

4.3. Quantity sampling

The next optimization we propose is called quantity
sampling. The idea is to produce coarse-grained candidate

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726-1745

1731

Length Candidate Patterns Frequent Basic Patterns Candidate Patterns Frequent Patterns
(Filtering Step) (Counting Step)
35 3 12 10
([0, 2)[e, 3D), (([a,2][e,4])),
(14, 2][a. 2]), {[d3)[a, 2]},
(1d. 2)la. 21), {{d,3lla, 2D, g0y 41 ([, 1)[c, 4),
2 raa), (60, (o)), ((ac). (da), (de) s e,), €121 a2 1)), (1 2] 3)
(ba) .. (dF), (@)}, (Fd) e oo e | (a.2liea), (a3 1),
<[d77 3][c, 3]), ' [d, 3] [C: 4}>7 <[d7 3] [Cv 3])7 <[dv 3] [Cv 4]>
1 1 2 2
(14, 2] (o, 2][e, 1])), d,2)([a, 2)fe; 1)),
’ (d(ac)), {d(ac)), ([, 3]([a. 2][c, 1]) d,3]([a. 2][e. 1)

Fig. 5. Candidate and frequent patterns with hash filtering.

patterns first and use the coarse-grained frequent patterns
to examine the candidate patterns with more detailed quan-
tity values in order to find the boundary quantity values
occurring in the maximal sequential patterns. A set of these
candidate patterns generated from a coarse-grained fre-
quent pattern is called a grid cell. The first step is called
the sampling step and the second step is called the quantity
counting step. The first phase quickly prunes the range of
quantities that cannot be a part of frequent maximal pat-
terns, and then the second phase actually finds the frequent
maximal patterns.

Let us consider the sequence database in Fig. 1a. We
assume the minimum support of 3 and k=2 is used for
sampling. We also assume that an item i has L; distinct
quantity values in the sequence database. With k intervals
where there are at least k quantity values, we use k sampled
points. However, if k is greater than L, for an item i, we
select every quantity value for sampling. Note that if the
number of distinct quantity values for an item is at most
the number of intervals for sampling, the first phase pro-
duces candidate patterns with every quantity value. The first
phase for the length of 2 generates 89 candidate patterns as
presented in Fig. 6a. By scanning the database and count-
ing, we have 7 frequent patterns and we can delete
([d, 1][c, 1]) by subpattern pruning. We use “underscoring”
in the figure to represent the frequent patterns that may
be pruned by subpattern pruning. Since the number of dis-
tinct quantity values of items « and b is the same as the num-
ber of intervals, every quantity value is used to generate
candidate patterns. We produce 4 candidate patterns from
the frequent patterns obtained by the first phase. This
results in 93 candidate patterns. When the length of patterns
is 3, we generate 2 and 1 candidate patterns in the first and
second phases respectively as illustrated in Fig. 6b.

Lemma 4.2. Even if we remove proper subpatterns in the
frequent patterns in the sampling step, all frequent maximal
sequential patterns are found.

Proof. Assume that a frequent pattern o is a proper sub-
pattern of . The candidate patterns generated with o in
quantity counting step are all proper subpatterns of f
and cannot be frequent maximal patterns. Thus the

Phase Candidate Patterns Frequent Patterns
89 7
([a, 2][a, 2]),
(la. 2] 2]). e
<([a’72][b72})>7 R <[d 3][a 2])’
1 <[b72][a72}>""’ <[d 1][}>7
G| L
T (1d.3le. 1)) (d. 3](c,4)
4 3
(([a, 2][c, 3))),
([, 2][a, 21),
2 ([, 2][a, 2]),
(d, 2][c, 4]), ([, 3][c, 3]) ([d, 2][c, 4]), ([d, 3][e, 3])
Phase Candidate Patterns Frequent Patterns
2 2
1 ([d,1]([a, 2][c, 1])), ([d,1]([a, 2][c, 1])),
([d, 3]([a12][6 1)) ([d, 3]([a12}[0 1))
2 ([d, 2]([a, 2][c, 1])) ([d, 2]([a, 2][c, 1]))

Fig. 6. Candidate and frequent patterns by quantity sampling. (a)
Candidate and frequent patterns for the size of 2, and (b) Candidate
and frequent patterns for the size of 3.

removal of proper subpatterns for frequent patterns does
not affect the correctness of Apriori algorithm with quan-
tity sampling. O

Due to the above lemma, we can delete any frequent
pattern that is a proper subpattern of any other frequent
pattern without affecting the output. This optimization is
called subpattern pruning. To incorporate this style of
pruning into Apriori-QSP, we insert an extra step immedi-
ately after the sampling step, which deletes every frequent
pattern that is a proper subpattern of other frequent pat-
terns. Fig. 7 presents the Apriori-Sampling that is Apri-
ori-QSP with quantity sampling. In each pass, we use the
coarse-grained frequent patterns with sampled quantity,
F*¥ ! from the previous pass to generate the coarse-grained
candidate patterns C* and then measure their support by
making a pass over the database DB. After finding the
coarse-grained frequent patterns F*, we apply the pruning
by Lemma 4.2 to reduce the search space. Notice that F*
may not include all frequent extended k-patterns due to
Lemma 4.2. Thus, we have to keep distinct quantities for

1732 C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745

Procedure Apriori-Sampling(D B)

begin

1. F':= { Frequent 1-length patterns }

2. F':={z|z € F' Az is a pattern with sampled quantities }
3. for (k=2; F*' £0; k++) do {

4 C* .= apriori-gen(F*~1)

5. counting-support(DB, C¥)

6. F¥ .= { x|z € C* A z.sup > minsup }

7 F* := pruning-proper-subpattern(F*)

8 C* := { yly € «’s grid cell where z € F* }
9. counting-support(DB, C*)

10. F*:=F*u{zlz € C* A z.sup > minsup }
11. F*!':= pruning-non-maximal(F*~!, F*)
12. }

13. F*~! := pruning-non-maximal(F*~!, F*)

14. return U, F*

end

Fig. 7. The Apriori-Sampling.

each frequent items in order to generate all necessary can-
didates at the next pass. Next, we make the candidate set
C* with the grid cells of pruned F*, and mine the rest of
the frequent extended k-patterns. All non-maximal pat-
terns are removed from F*~! at the end of each pass and
thus Apriori-Sampling finds all frequent maximal extended
patterns.

The following lemma shows that quantity sampling can
only reduce the total number of candidates.

Lemma 4.3. The number of candidate patterns generated by
Apriori-QSP with quantity sampling technique is at most the
number of candidates produced without quantity sampling.

Proof. Let the set of candidate patterns with quantity sam-
pling be C;. Then, C; is represented by a union of Cypse
(the set of candidate patterns in the sampling step) and
C.oun: (the set of candidate patterns in the quantity count-
ing step). Let us represent the set of candidate patterns
without quantity sampling by C,. Since the candidate pat-
terns generated in the first step do not need to re-generated
in the second phase, we have Cyuupie N Cooune = 0. Since
Csampie € C> and Cepyy € Co, we have C; C C,. Further-
more, we have |Coumpre| T | Ceound = |C1] < |G|, O

4.3.1. Determining the number of sample points

Let us investigate the number of candidate patterns with
the length of m. Let k be the number of equi-distance inter-
vals to choose sampling points for each item in the candi-
date patterns. We select k& sampling points. We always
select the smallest quantity value, but do not consider the
largest quantity value for sampling point in each item.
For example, if we have quantities ranging from 1 to 5
and k is 2, we can select two intervals [1,3] and [4,6]. Then,
we select 1 and 4 as the sampling points. Thus, & also
denotes the actual number of sampling points.

For simplicity, we assume that the number of sampling
points is same for every item in the candidate patterns. The

algorithm with quantity sampling technique produces
k"|C| candidate patterns in the first step where C is the
set of candidate patterns with the length m explored by tra-
ditional sequential pattern algorithms ignoring quantity
values. Assuming that the frequent patterns discovered
after subpattern pruning step is F; (0 < |Fy| < £”'|C|) and
an item i has L; distinct quantity values, the counting step
then examines Y. 5[], (%52 — 1) candidate patterns
where c.i, denote the nth item of ¢ (1 < n < m). We subtract
one from L‘T' since we do not re-consider the frequent pat-
terns produced by quantity sampling step. Thus, the total
number of candidate patterns is

i+ 11 <LT—1) (1)

ceF 1<n<m

A central issue concerning quantity sampling is the value of
k, the number of values initially sampled. The value of k
that minimizes the number of candidate patterns is ob-
tained by solving partial differential equation of the for-
mula in Eq. (1). Assuming |F;| is a constant and perform
partial differentiation, we get

2m __ 1
k _WZ I Ze. 2)

ceEF| 1<n<m

By setting L; to L, we have

_ wfiF]
k=] VL 3)

4.4. Apriori-all

To conclude this section, we show that we can incorpo-
rate all the aforementioned optimizations into the basic
Apriori-QSP. We call the algorithm Apriori-All, which is
presented in Fig. 8. Apriori-All consists of three parts.
The first part (lines (4)—(6)) and the second part (lines
(7)-(10)) performs the hash-filtering and the quantity sam-
pling respectively. The first part generates basic extended
candidate patterns C* and count them by scanning the
sequence database DB. The second part then produces
the coarse-granulated candidate patterns from the basic
extended frequent patterns. Note that the candidates gener-
ated by hash-filtering phase is a subset of the candidates
produced by quantity sampling phase. Thus, we do not
need to re-consider the candidates examined by hash-filter-
ing phase. The “proper” in line (7) represents this exclu-
sion. After we compute frequent -coarse-granulated
patterns with sampled quantities and prune using Lemma
4.2, we generate the rest of remaining frequent patterns
in the third part (lines (11)—(13)). The frequent patterns
are collected into F*, and non-maximal patterns are
removed (lines (14)—(16)).

Let us consider the example illustrated in Fig. 1 with the
minimum support of 3. The candidate patterns in the first

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745 1733

Procedure Apriori-All(DB)
begin

1. F':= { Frequent 1-length patterns }
F':= {z|x € F* Az is a basic extended pattern }

for (k=2; F* ' £0; k++) do {
C* .= apriori-gen(F*~1)
counting-support(C*)

© NS G e W

counting-support(C*¥)

F* .= { 2]z € C* A x.sup > minsup }
C* := { yly is ’s proper superpattern with sampled quantities where z € F* }

9 F*:= F* U { z|z € C* A z.sup > minsup }

10. F* := pruning-proper-subpattern(F*)
11. C*:={yly € a’s grid cell, x € F* }

12. counting-support(C*)

13. F*:=F" U { x|z € C* A z.sup > minsup }
14. F*!' := pruning-non-maximal (F*~1, F*)

15. }

16. F*~! := pruning-non-maximal(F*~*, F*)

17. return U, F*
end

Fig. 8. The Apriori-All.

filtering, the second sampling and the third counting steps
are presented in Fig. 9. For the length of 2, we produce 35
candidate patterns for the frequent basic extended 2-pat-
terns in the first step, and 5 and 4 candidates in the second
and the third steps respectively as shown in Fig. 9. Notice
that we can delete (dc), i.e., ([d,1]c,1]), by subpattern
pruning as we mentioned in the previous subsection. This
results in 44 candidate patterns for the length of 2 with
Apriori-All, and the number of candidates for the length
of 2 is the smallest among those of proposed algorithms.

a [Phase Candidate Patterns Frequent Patterns
35 3
(aa), (ab), ((ab)),
1 (ba),..., {df), ((df)), ((ac)), (da), (dc)
fd)
5 4
(([a, 2][c,4])),
) (d, 3][a, 2]), <[Z>?1’Ha7z}>>
e e (@3l 1 (e)
[d, 3][c,]>,4 [d, 3][c, 4]) o 3 L
((a,2][¢, 3])),
([d, 2][c, 4]),
3 ([d, 2][a, 2]),
(1. 2][e. 4}, (. B[e,) | 12112 (433D
b Phase Candidate Patterns Frequent Patterns
1 1
1 (d(ac)) (d(ac))
1 1
2 (I, 3]([a, 2][c, 1])) ([, 3]([a, 2][c, 1]))
1 1
3 (Id, 2]([a, 2][c, 1])) ([d, 2]([a, 2][c, 1]))

Fig. 9. Candidate and frequent patterns by Apriori-All. (a) Candidate and
frequent patterns for the size of 2, and (b) Candidate and frequent patterns

for the size of 3.

Let us investigate the number of candidate patterns with
the length of m. Let k be the number of equi-distance inter-
vals to choose sampling points for each item in the candi-
date patterns. We assume that an item /i has L; distinct
quantity values in the sequence database. We select & sam-
pling points. For simplicity, we assume that the number of
sampling points is the same for every item in the candidate
patterns. The algorithm with quantity sampling technique
produces k™|C| candidate patterns. Let us denote the set
of candidate patterns and frequent patterns considered by
hash filtering as C and F respectively.

The first step of quantity sampling produces |F|(k" — 1)
candidate patterns. Let the set of frequent patterns after
subpattern pruning be F; (0 < |Fy| < |F|]K™). The second
phase of sampling generates 3.y (IT<,<, "<+ — 1) candi-
date patterns where c.i, denote the nth item of ¢
(1 < n < m) and m is the length of ¢ in F}.

Therefore, the total number of candidate patterns exam-
ined is

m LCin
el Fee -0+ 3 TT (5 -1) @
ceFy 1<n<m

which is typically much less than the number generated by
Apriori-QSP.

The value of k that minimizes the number of candidate
patterns is obtained by solving a partial differential equa-
tion of the above formula. Assuming that |F)| is a constant,
L;= L and we perform partial differentiation, we get

_ =/IF]
k= \/; VL. (5)

Assumed that k is same for both Apriori-Sampling and
Apriori-All. Since |C| >= |F] holds, the difference between
Eq. (1) and Eq. (4) becomes (k" — 1)(|C| — |F|) = 0. Thus,

1734 C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

we can see that the total number of candidate patterns
explored by Apriori-All is at most (typically smaller than)
that of Apriori-Sampling. From Eqgs. (3) and (5), we can
also show that the k value obtained by Eq. (3) is at most
(typically smaller than) that obtained by Eq. (5). In other
words, it suggests to use smaller number of sampled points
in the candidate patterns for Apriori-Sampling than Apri-
ori-All. Intuitively, it makes senses because we have higher
probability of being frequent with the candidate patterns in
F than in C.

In each step of generating frequent patterns with the
length of / in Apriori-All, we maintain frequent quantity
values to calculate L; so that it can be used to compute k
in the next step of discovering frequent patterns with the
length of /+ 1. For each item i, we use k = \/L;, which is
simpler expression of the above equation. The experimental
results to be shown in Section 5 are based on this
implementation.

The following lemma is a consequence of the earlier
lemmas.

Lemma 4.4. The number of candidate patterns produced by
Apriori-QSP with subpattern pruning, hash filtering and
quantity sampling is not more than the one without them.

In Section 6, we will show experimental results on the
effectiveness of the two optimizations, as well as the Apri-
ori-All.

5. PrefixSpan-QSP and the two optimizations

Recall that algorithms for mining conventional qualita-
tive sequential patterns can be either breadth-first or depth-
first. So far, we have considered breadth-first Apriori-style
algorithms. In this section, we consider depth-first prefix
tree type algorithms. In the next section, we will compare
these two types of algorithms for mining quantitative
sequential patterns.

In the subsections, we first introduce PrefixSpan in Pei
et al. (2001), and present PrefixSpan-QSP and the two opti-
mizations, hash-filtering and sampling, which are similar to
those for Apriori-QSP. The difference is that the former
concerns in projection and recursive call, while the latter
concerns the candidate generation and support counting.

5.1. PrefixSpan algorithm

Assume that all items in every element of the sequential
patterns are ordered alphabetically. Given a sequential pat-
tern o= (ejex...¢,), a sequential pattern = (e\é}...
e) (m<n)is called a prefix of o if and only if: (i)
e=e(i<m—1); (i) €, Ce,; and (i) every item in
(em —e€),) is in alphabetical order after the items in ¢,
For example, (a), (aa), {(a(ab)), (a(abc)) is the prefix of
all sequential patterns (a(abc)(ac)d(cf)). However, (ab) or
(a(bc)) is not a prefix.

A subsequence pattern o’ of a sequential pattern o is
called a projection of o with respect to the prefix f if (1)

o’ has prefix § and (2) there exists no proper supersequence
pattern o of o’ such that o’ is a subsequence pattern of «
and has prefix . Let o' = (eje; ... ¢,) be the projection
of o with respect to f=(eie;...en1€,) (m<n). A
sequential pattern y = (€} e, ...e,) Where €/ = (e, — ¢),)
is called the postfix of o with respect to the prefix f and
is represented as y = «/f. We also represent it as a = - y.
If €/ is not an empty set, the prefix is represented as
((-the items ofe])e,1 . .. e,). For example, ((abc)(ac)d(cf))
is the postfix of (a(abc)(ac)d(cf)) on the prefix (a) and
((Lbe)(ac)d(cf)) is the postfix of (a(abc)(ac)d(cf)) on the pre-
fix (aa). If is not a subsequence pattern of «, the projec-
tion and postfix on f are all null-pattern (). If « is a
sequential pattern for a sequence database S, a-projected
database is the set of postfixes on o in S.

Given a prefix o and its projected database, PrefixSpan
computes all frequent patterns that start with the prefix
o. (Thus, if a null-pattern is given as a prefix, it returns
all frequent qualitative sequential patterns in the sequence
database.) The PrefixSpan essentially either extends the last
element of o by adding a new element or appends a new ele-
ment to the end of «. When we restrict o to be length-1 fre-
quent patterns, it is called level-by-level projection. If we
restrict o to be length-2 patterns, it is called bi-level projec-
tion. After we find all frequent items, we generate new pre-
fixes by adding each of the items to the prefix o. These new
prefixes and their projected databases are collected and the
function PrefixSpan is called recursively. The step of
extending prefixes is done by depth-first traversal. The
detailed description of the PrefixSpan algorithm can be
found in Pei et al. (2001).

Let us consider the sequence database and minimum
support of 3 in Fig. 10 which was obtained by ignoring
quantities from the sequence database in Fig. 1a. The fre-
quent items in the sequence database are a,b,c,d and f.
Among them, we first would like to discover sequential pat-
terns having prefix (@). In this case, we need to consider
only the sequential patterns containing (@) that are the
postfixes with the prefix (a). Sequential patterns in
Fig. 10a are projected with (a) to calculate the (a)-pro-
jected database, which consists of 5 postfixes shown in
the second column in Fig. 10b. Note that when we compute
postfixes for (@) in the given database, we can discard
unfrequent items from the postfixes since they will not be
frequent in the projected database either. For instance,
the item e does not show up in the postfixes of the second
and fifth sequential patterns in the second column in
Fig. 10.

By scanning (a)-projected database once, every sequen-
tial patterns with length-2 having prefix (a¢) can be
generated. For example, _c¢ is the only frequent item in
(a)-projected database and thus we have ((ac)) only for
the frequent patterns with length-2 and the prefix (a).
Now, we have to decide whether we will recursively mine
frequent patterns having the prefix {(ac)) or not. Since we
have only a single frequent item _¢, {(ac))-projected data-
base will consist of _¢ only. However, the duplicated items

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745

1735

Sequence id Sequence b | sequence id | prefix (a) | prefix (d) | prefix (da)
1 (d(ac)f)) 1 (<) f) {(ac)f) ((-¢))
2 (a(bef)(df)) 2 ((0f)(df)) ()
3 ((bd)c) 3 {c)
4 ((cd)(acf)) 4 ((<f)) ((acf)) ((-c))
5 ((df)(ab)ec) 5 ((D)e) | {(-f)(ab)c) (@)
6 ((cf)d(ac)) 6 (<)) ((ac)) ((0))

Fig. 10. An example for PrefixSpan. (a) Sequence database, and (b) Projected database.

are not allowed in an itemset and so we do not need to cal-
culate the frequent patterns having the prefix ((ac)) any
more. In contrast, if (ac) were a single frequent pattern
with prefix (a), we should invoke prefixSpan recursively
to discover the frequent patterns with the prefix (ac) since
we may have the frequent patterns such as {acc). The pro-
cessing of (a)-projected database is terminated resulting
two frequent patterns (@) and (ac). Likewise, we can pro-
duce the sequential patterns with the prefix (b), (c), (d)
and (f), respectively, by constructing (b)-, (c)-, (d)- and
(f)-projected databases and processing them respectively.
Frequent patterns having prefix (d) are (da), (dc) and
(d(ac))y while we cannot find frequent patterns having (b),
(c) and (f). The projected databases used to discover these
frequent patterns are presented in the third and forth col-
umns in Fig. 10.

5.2. PrefixSpan-QSP

In order to modify PrefixSpan to work with quantities,
we generate a projected database with respect to extended
itemsets instead of itemsets. Recall that level-by-level and
bi-level projections restrict o to be length-1 and length-2
frequent patterns respectively. To generate those as, we
can apply Apriori-All developed in the previous section
to generate frequent extended itemsets. However, to adapt
to the projection-based approaches such as PrefixSpan,
Apriori-All needs to be modified as follows:

o [ncorporating levels: In order to perform level-by-level or
bi-level projections, we augment Apriori-All with level
as input arguments. The value of level is the maximum
length of frequent patterns that we are interested in.
To perform level-by-level or bi-level projection, we set
level to one or two respectively.

e Incorporating was: Because PrefixSpan is a projection
based approach, Apriori-All also needs « and DB as
input arguments. The reason is that frequent itemsets
are produced from the a-projected database DB that is
projected by the prefix «. With this argument, the proce-
dure Apriori-All returns all frequent maximal patterns
up to the length of level; we call it F,.

o Frequent I-length pattern generation: Suppose that we
have a prefix o = ([,2]), and two sequential patterns
such as ((_[a,1])) and {([b,3]c,1])) with the minimum
support count of one. We must produce four frequent

l-length patterns: ((_[a,1]), ([b,3]), {([c,1]) and

(_[e, 17). Note that the last one, { [c, 1]) cannot be dis-

covered without knowing the prefix ([b,2]). To do so

in Apriori-All,given some prefix o= (eje;...¢,) and
some sequential pattern f§ = (e}é,...e), we first pro-
duce every item in ¢, of § as 1-length pattern. In addi-

tion, we compute the postfixes w.r.t. the prefix ¢, (i.e.

last element) in « on every element ¢} in f and produce

_a as l-length pattern for each item «a in the postfixes.

When « is a null-pattern, we do not perform this step

of producing the patterns of _a.

Candidate generation: To deal with continued items (e.g.,

_[a,2]), Apriori-All needs to treat [a,2] and _[a,2] as dif-

ferent items in the join step of candidate generation and

in pruning. In general, even when a continued itemset
and a non-continued itemset have the same item and
quantity, we still need to treat them as different itemsets.

However, a continued itemset needs to be treated spe-

cially in the join step of candidate generation. For exam-

ple, consider the sequential patterns ((_[a,2])) and

([b,3]); we produce the candidates, ((_[a,2])[b,3]) and

([b,3]b,3]). However, we do not generate the candidate

(5,31 [a2)).

e Support counting: In order to count supports of candi-
date patterns, we need to check whether a candidate pat-
tern ¢ is a subsequence pattern of each sequential
pattern ¢ in DB. If the first element of ¢ does not contain
“_”, we simply check whether ¢ is a subsequence pattern
of t. However, if it does, we concatenate the last element
e, in o= {eje, ... e, in front of both ¢ and ¢ and then
check whether ¢, - ¢ is a subsequence pattern of e, - t.

Fig. 11 presents the PrefixSpan-QSP algorithm. It
accepts o, DB and level as input arguments. DB is a pro-
jected database by the prefix o. As discussed above, F, con-
tains all frequent maximal patterns up to the length of level.
The next step is to generate new frequent patterns by con-
catenating o with every pattern in F,. Among patterns in
F,, the patterns with the length of level are called F'*'.
We compute G¥** by adding non-maximal frequent pat-
terns generated by enumerating all possible smaller quan-
tity values to the maximal patterns in F“. We next
perform projections for every element in Gf”e’ and call Pre-
fixSpan-QSP recursively. Note that we consider F'“** as an
empty set. Thus, if we set level to oo, PrefixSpan-QSP
behaves as an Apriori style algorithm.

1736

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

Procedure PrefixSpan-QSP(«, DB, level)

begin
1. F, := Apriori-All(ee, DB, level)

2. F:={zlz:=a-yforallye F,}

3. Glevel .= {z|z € y’s subquantity sequential patterns where y € F.*°'}
4. for each 3 € G do {

5. DB’ = projection(« - 3, DB)

6 F := FU PrefixSpan-QSP(« - 3, DB/, level)

7}

8. return F

end

Fig. 11. The PrefixSpan-QSP.

Let us consider an example by applying PrefixSpan-QSP
to the sequence database in Fig. 1 with the minimum sup-
port of 3. If we compute a-projected database with
a = ([d,1]) which is one of the frequent extended items,
we get the sequential patterns in the second column in
Fig. 12. The frequent extended items in the above a-pro-
jected database are [a,2], [c, 1], [¢,3] and [c,4]. If we next
compute a-projected database with respect to

= ([d,1][a,2]), it comes the last column in Fig. 12. We
have _[c,1] only as a frequent extended item in this pro-
jected database. Now, we have to decide whether we will
recursively invoke PrefixSpan-QSP to find frequent pat-
terns with the prefix ([d, 1]([a,2]¢c, 1])) or not. Since we have
only a single frequent item _[c,1], ([d,1)([a,2]c,1]))-
projected database will consist of extended item with the
form of _[c, ¢] only where ¢ is quantity values for c¢. Since
duplicated items are not allowed in an extended itemset
due to its definition, we do not need to further explore
the frequent patterns with the prefix ([d, 1]([a,2]c, 1])) any
more. The recursive processing of ([d, 1]a,2])-projected
database is now terminated. After returning from this
recursive call, we repeat the iteration recursively with
o= (d,1]ec,11), ([d,1]c,3]) and ([d,1]c,4]). If we calcu-
late the a-projected database with respect to o=
([d, 1([a, 2](c, 1])), it is empty. Since we do not have any fre-
quent extended item, we repeat the iteration recursively
with o = ([d, 1][c,1]). After returning from this recursive
call, we again repeat with ([d, 1]c,3]) and ([d,1]c,4]).The
process of producing prefixes is performed by depth-first
traversal. Since the length of o increases one at a time for
the projections, we call this strategy level-by-level projec-
tion. The projection tree by PrefixSpan-QSP with level-
by-level projection is shown in Fig. 13 and there are 24 pro-
jections. Since the major cost of PrefixSpan is constructing

sequence id prefix ([d, 1]) prefix ([d, 1][a, 2])
1 (([a,3][e, 1])[f, 1]) ((-[e, 1]))
2 ((-[f>2))
3 ([e,3)
4 (([a,2][c, 4][£,5])) (e, 4]))
5 ((-1f: 3] ([, 2][b, 3])[c, 4]) ([e,4])
6 (([a, 3][c, 4])) ((-[e,4]))

Fig. 12. Projected database.

projected databases, a bi-level projection strategy is intro-
duced in Pei et al., 2001 to reduce the number of projected
databases. The main idea is to compute frequent patterns
with the length of two and construct a-projected database
for each pattern «.

In Pei et al. (2001), the optimization technique called 3-
way apriori checking is proposed to prune items in the con-
struction of projected database. For instance, the sequence
database in Fig. 10a has (dc) but not (df) as frequent pat-
terns with ignoring quantities. Since we know that (dcf)
and any supersequence pattern of it cannot be frequent,
we can exclude item f from (dc)-projected database. In
the following, we generalize this optimization technique
for the sequential patterns with extended items.

Generalized 3-way apriori checking optimization: To con-
struct o - f-projected database, where o is a given prefix and
B € F'® let e be the last element of and p’ be the prefix
of ff such that = fe.

o If all level-subpatterns of f([x, 1]) are frequent, then [x,q]
for every ¢ > 1 is not excluded from any element of
postfixes except the first element that is a superset of e.

e Let ¢ be formed by unioning a extended item [x,1]
where ([x,1]) £ e. If all level-subpatterns of ff’e’ are fre-
quent, then [x,q] for every ¢ > 1 is not excluded from
the projection.

The (d 1][a,2])-projected database for the sequential
pattern 5 is ([¢,4]) in which [b,2] is excluded as shown in
Fig. 12 because ([d,1]b,2]) and (([d, 1]b,2])) are not fre-
quent. ([d,1]([a,2]c, 1]))-projection is skipped because all
extended items will be excluded due to this optimization.
Essentially, this algorithm adopts the aforementioned bi-
level projection with extended items, and uses the Apri-
ori-All algorithm proposed in the previous section at the
same time to compute all the length-2 frequent quantitative
sequential patterns.

5.3. Hash filtering

In Section 3.2, we introduce the idea of hash filtering for
the breadth-first apriori framework. Here we show that the
same idea can also be applied in a depth-first framework.

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

1737

[a,2] [b,2]
[c,1] [c,3] [c.4]
[d,1] [d,2] [d,3]

[f,1] [f,2]

. [£,3] [1.5]

8 projections

4 projections 4 projections 4 projections o o
(<[d,l][a,2]% Q[d, 1][c,l]; (<[d,2][a,2]% Q[d,Z][C,]]; (<[d,3][a,2]% (<[d,3][c,l]; —
<[f,5]>
_[e.1] %] _[e.1] %] _le.1] %]
Clen U2 JlxnJ 2 JUL 0 JU 2 5
<[d,1][c,3]> <[d,2][c.3]> <[d,3][c.3]>|
2) 2) 2)
<[d,1][c,4]> <[d,2][c,4]> <[d,3][c.4]>
2) 2) 2)

Fig. 13. Projection tree of PrefixSpan-QSP.

Specifically, PrefixSpan-Hash runs the conventional Prefix-
Span first ignoring quantities to find out sequential pat-
terns. This step is called the filtering step. Then we
enumerate frequent patterns by putting all frequent quan-
tity values to the frequent patterns having frequent post-
fixes found in the filtering step. Hereafter we generate
projection databases of these enumerated frequent patterns
and recursively call PrefixSpan-Hash. This step is called the
quantity-counting step.

The algorithm PrefixSpan-Hash is presented in Fig. 14.
We first find frequent maximal patterns with the length
up to level in a-projected database DB. We represent these
patterns as F,. In order to produce actual frequent patterns
of original database, we concatenate o and every element of
F,. Instead of projecting and recursively calling with all
patterns enumerated from F'“ where F** is the set of
length-/evel patterns in F,, we probe basic extended pat-
terns of patterns in F' called G'**/. For patterns
p e Gi"w’ whose result obtained by recursive call to Prefix-
Span-Hash with « - § are not empty, we further project and
recursively call with the frequent patterns represented by
G'**! which is obtained by replacing frequent bigger quan-
tity values to the quantity value in f.

We will illustrate how PrefixSpan-Hash works by a
sequence database in Fig. 1 with the minimum support of
3 and level-by-level. The projection tree with hash filtering
is illustrated in Fig. 15. Among all 12 prefixes shown in
the root node of Fig. 15, first we compute the projections
and recursively invoke PrefixSpan-Hash with the basic
extended patterns, ([a,2]), ([b,2]), {([c,1]), ([d,1]) and
([f,1). Then, since ¢ has no more quantities to enumerate,
there is neither projection nor recursive call for ¢ in the
quantity-counting step, and since the results of the recursive

calls with ([b,2]), {[c,1]) and ([f,;1]) are empty respectively,
we do not need to traverse with the superquantity patterns
of these patterns such as ([c,3]), {[¢,4]), {[f,2]), ([,3]) and
(If, 5)) in the quantity-counting step. However, the recursive
call with [d, 1] has non-empty result, therefore we have to
find frequent patterns with the superquantity patterns as
prefixes, ([d,2]) and ([, 3]). The gray-colored nodes are tra-
versed in the filtering step, while others are explored in the
quantity counting step. Note that the number of projections
with hash-filtering is reduced from 24 to 13.

5.4. Quantity sampling

In Section 4.3, we introduce the idea of quantity sam-
pling for the breadth-first apriori framework. Here we
show that the same idea can also be applied in a depth-first
framework. The idea is to project and recursively call Pre-
fixSpan-Sampling with coarse-grained frequent patterns
first and then we project and recursively call PrefixSpan-
Sampling with patterns in the grid cells' of the coarse-
grained frequent patterns having frequent postfixes. The
first step is called the sampling step and the second step
is called the quantity counting step.

Assume that we are in the process of invoking Prefix-
Span-Sampling recursively with the sampled prefixes o
and f5. Let us define the postfixes w.r.t the prefix 0 of the
results, which are obtained from recursive call to Prefix-
Span-Sampling with the prefix 0 and O-projection, as Py.
Every element in the grid cell of a sampled prefix « can
be pruned for projections and recursive calls whenever o

! Defined in subsection 4.3.

1738 C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745

Procedure PrefixSpan-Hash(a, DB, level)

begin

1. F, := Apriori-All(er, DB, level)

Glevel .= Glevel U {z|x € B’s proper superquantity patterns}

2. F:={zlz:=a-yforalyecF,}

3. Glvel .= {z]x € Fl®' Az is a basic extended pattern }
4. for each 3 € Gi*¥* do {

5. DB = projection(« - 8, DB)

6. F := PrefixSpan-Hash(a - 3, DB, level)

7. if F' # 0 then {

8.

9. F:=FUF

0. }

11. }

12. for each 3 € G do {

13. DB’ := projection(a - 3, DB)

14. F := FU PrefixSpan-Hash(« - 3, DBI, level)

15. }
16. return F
end

Fig. 14. The PrefixSpan-Hash.

Fig. 15. Projection Tree of PrefixSpan-Hash.

has a proper supersequence pattern f§ satisfying P, = Py,
due to the following lemma.

Lemma 5.1. Assume that we are in the process of invoking
PrefixSpan-Sampling recursively — with the prefixes
aCy EpC---Cy,C B When the set of postfixes w.r.t.
o of the results obtained from recursive call to PrefixSpan-
Sampling with o and a-projection are identical to the
postfixes w.r.t. f§ of those with [and p-projection, all
frequent maximal sequential patterns are found even though
we prune the recursive calls with the prefixes y; for all
i=1,...,n

Proof. Let us define the postfixes w.r.t 6 of the results
obtained from recursive call to PrefixSpan-Sampling with
0 and 0-projection as Py. For a given database, if we have
o C f for the prefixes o and f, we have P, C Pg. It implies

P,OP,DOP, 2 ---2P, DOPs When we have P, = Py,
the condition of P, =P, =P, =---=P, =Pz must
hold. This results that the recursive call with y; does not
add any frequent maximal sequential patterns. [J

The algorithm PrefixSpan-Sampling algorithm is shown
in Fig. 16. We first find frequent maximal patterns with the
length up to level in a-projected database DB. We represent
these patterns as F,. In order to produce actual frequent
patterns of original database, we concatenate o and every
element of F,. Instead of projecting and recursively calling
with all patterns enumerated from F'* where F'*** is the
set of length-level patterns in F,, we probe patterns with
sampled quantities of F'**/ called G'*. For patterns
p e Gie"e’ whose result obtained by recursive call to Prefix-
Span-Sampling with o - § are not empty, we further project
and recursively call to PrefixSpan-Sampling with the

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745 1739

Procedure PrefixSpan-Sampling(«, DB, level)
begin
1. F, := Apriori-All(a, DB, level)

2. F:={zlz:=a-yforalyecF.}

3. Glevel .= {z|z € Fl***" Az is a pattern with sampled quantities }
4. for each g € Gle* do {

5. DB = projection(« - 3, DB)

6. F := PrefixSpan-Sampling(c - 8, DB/7 level)

7. if F#(and ~3yst. (y3BAP, = Ps) then {

8. Glevel .= Glevel U {z|x € B’s grid cell}

9. F:=FUF

10. }

11. }

12. for each 8 € G do {

13. DB’ := projection(a - 8, DB)

14. F := PrefixSpan-Sampling(« - 3, DB,, level) UF
15. }

16. return F

end

Fig. 16. The PrefixSpan-Sampling.

frequent patterns in f5’s grid cell. Note that we do not need
to consider grid cells pruned by Lemma 5.1. To decide effi-
ciently whether a grid cell is pruned or not, we sequentially
probe sampled patterns with the same items from the larg-
est quantities to the smallest quantities. The unioned set of
grid cells we actually process is denoted by G'*'.
Consider a sequence database in Fig. 1 with the mini-
mum support of 3. Suppose that we use level-by-level pro-
jection and we sample two intervals from possible
quantities of an extended item. First, we compute the pro-
jections and recursively invoke PrefixSpan-Sampling with
the sampled extended patterns, ([a,2]), ([b,2]), ([c,1]),
([¢,4)), ([d,1]), ([d,3]), ([, 1]) and ([f,3]) from all possible
12 prefixes. For a and b, since the number of possible quan-
tities is only one, a single, actually all, quantity is sampled.
For others, two quantities are sampled with equi-width.
Then, since the grid cell of a is empty, we cannot further
explore for a. Furthermore, because the results of the

recursive calls with ([5,2]), ([¢,1]), {([¢.4]), ([f;1]) and
([f,3]) are all empty, we do not need to traverse with pat-
terns in the grid cells of these patterns in the quantity-
counting step. In the case of d, now that P, is the same
as P43)), we are sure that P, is the same as P, and
Pyq31y by Lemma 5.1. Thus, we do not need to invoke a
recursive call, nor do we need to perform a projection with
the prefix ([d,2]). Finally, since the grid cell of ([d,3]) is
empty, the process of PrefixSpan-Sampling is terminated
now. The projection tree with quantity sampling is pre-
sented in Fig. 17. Because we do not need to perform the
quantity counting step with this example, all nodes are
explored in sampling step and are gray-colored. Note that
the number of projections with sampling is reduced from
24 to 14.

5.5. PrefixSpan-all

We can incorporate all the aforementioned optimiza-
tions into the PrefixSpan-QSP and call it PrefixSpan-All
that is presented in Fig. 18. After finding frequent maximal
patterns with the length up to level in a-projected database
DB, the rest of steps in the PrefixSpan-All are composed of
the following three steps.

First, we perform projections on DB with the prefix of
a- B for every value of f§ in G'**/ where G represents
length-/evel basic extended patterns of frequent postfix pat-
terns in F,. Then, if the recursively invoked PrefixSpan-All
returns more than one frequent pattern, we gather super-
quantity patterns of f which have sampled quantities
including . The collection, G'**, is used in the second step
below.

Secondly, we perform projections on DB with the prefix
of o+ B for every value of B in G**/ with the exception of
basic extended patterns that already have their projected
database and frequent postfixes. Then, if the recursively
invoked PrefixSpan-All returns more than one frequent

[<)

[a,2] [b,2]
[c,1] [¢,3] [c,4]
[d,1] [d,2] [d,3]
[£,17 [£,2], [,3] [,5]

5 projections

Fig. 17. Projection tree of PrefixSpan-Sampling.

1740 C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

Procedure PrefixSpan-All(a, DB, level)

begin

1. F, := Apriori-All(o, DB, level)
F:={zlz:=a-yforally € F,}

Glevel .= {z|z € FL*®' Az is a basic extended pattern }

2
3
4. for each g € G do {

5. DB = projection(a - 3, DB)
6

7

8

F := PrefixSpan-All(a - 8, DB, level)

if £ # 0 then {

Glevel .= Glevel U {x|z € B’s super quantity patterns with sampled quantities}

9. F:=FUF

10. }

11. }

12. for each § € G do {

13. if B # a basic extended pattern then {

14. DB = projection(a - 8, DB)

15. F := PrefixSpan-All(a - 8, DB’ level)

6. }

17. if F # 0 and =3y st. (y 3B AP, = Ps) then {
18. Glevel .= Glevel U {g|z € B’s grid cell}

19. F:=FUF

2. }

21. }

22. for each 8 € G do {
23. DB’ := projection(a - 8, DB)

24. F := PrefixSpan-All(«a - 3, DBI, level)UF

25. }
26. return F
end

Fig. 18. The PrefixSpan-All.

pattern and f has no proper supersequence pattern y satis-
fying P, = Pp, we collect the patterns in grid cell of f into
Gievell

Lastly, we perform projections on DB with the prefix of
o - ff for every value of in G, we invoke PrefixSpan-All
recursively and obtain frequent patterns. These frequent
patterns are unioned and returned at the end of Prefix-
Span-All algorithm.

Let us examine how PrefixSpan-All works for a
sequence database in Fig. 1 with the minimum support of
3. We again use level-by-level projection for this example
and assume that we sample two intervals from possible
quantities of an extended item in the second step of Prefix-
Span-All. Among all 12 frequent items in the given data-
base, first we compute the projections and recursively
invoke PrefixSpan-All with the basic extended patterns,
([a,2]), ([b,2]), ([c,1]), ([d,1]) and ([f;1]). Then, since a
has no more quantities to enumerate, there is neither pro-
jection nor recursive call for a. Likewise, since the results
of the recursive calls with ([,2]), ([¢,1]) and ([f,1]) are
empty respectively, we do not need to traverse with sam-
pled patterns from these patterns. However, the recursive
call with ([d, 1]) has non-empty result, therefore we further
perform projection and recursive call with sampled pattern
([d,3]) from ([d, 1]). Although ([d,1]) is included in sampled
patterns of d, since we already traversed with ([d, 1]), we do
not consider ([d,1]) in the second step. The recursive call
with [d, 3] has non-empty result. However, now that P,
is the same as P, 3y, we are sure that P,) is the same as

P a1y and P, 3y by Lemma 5.1.Thus, we do not need to
invoke a recursive call, nor do we need to perform a pro-
jection with the prefix ([d,2]). Finally, since the grid cell
of ([d,3]) is empty, the process of PrefixSpan-All is termi-
nated now. The projection tree is presented in Fig. 19.
The gray-colored nodes are traversed in the first step,
and the black-colored node is explored in the second step.
We do not need to perform the third step with this exam-
ple. Note that the number of projections is reduced from
24 to 10.

The pseudo-projection proposed in PrefixSpan (Pei
et al., 2001) loads database into main memory if it can fit
into main memory and then use offsets in order to access
projected database. The pseudo-projection method cannot
scale well when the size of the database is large.

6. Experimental result
6.1. Algorithms

We conducted a comprehensive performance evaluation
of the various algorithms and optimizations proposed in
this paper. Specifically, we show the performance Figures
of the eight algorithms illustrated in Table 2.

In implementations of PrefixSpan algorithms, whenever
a projected database fits into main memory, we use pseudo-
projection in Pei et al. (2001) to speed up the cost of pro-
jection. We also implemented both level-by-level and bi-
level projections.

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745 1741

)

[a,2] [b,2]
[c.1][c.3] [c.4]
[d,2] [d,3]
[f,1] [f,2], [f,3] [f,5]

[d.1]

Fig. 19. Projection tree of PrefixSpan-All.

Table 2 Table 3
Algorithms Parameters
Algorithms Optimization |D| Number of data sequences
Apriori-QSP (Basic handling of extended items) |S| Average length of maximal potentially frequent Patterns
Apriori-Hash Hash filtering Ng Number of maximal potentially frequent Patterns
Apriori-Sample Quantity sampling Ny Number of maximal potentially frequent Itemsets
Apriori-All Hash filtering + Quantity sampling N Number of items
PrefixSpan-QSP (Basic handling of extended items) R Repetition level
PrefixSpan-Hash Hash filtering (0] Average value of quantities
PrefixSpan-Sample Quantity sampling
PrefixSpan-All Hash filtering + Quantity sampling
)))) Table 4
All experiments reported in this section were performed Synthetic data sets
on a Pentium-4 2.4 GHz machine with 512 MB of main pyuyy set D| S| Ns A N R 0

memory, running a Linux operating system. All of the
methods were implemented using GCC compiler of Ver-
sion 2.95.3.

6.2. Synthetic data sets

We modified a synthetic data set generater” for sequen-
tial pattern mining by IBM Almaden Research Center in
order to add quantities according to the probability distri-
bution. The modified generator takes the parameters
shown in Table 3. The dataset parameter settings were
summarized in Table 4. We set other parameter values
not shown in Table 4 to the default values. For example,
the average number of items was set to 2.5. We used expo-
nential distribution to generate quantity values with the
average quantity value given in the table.

6.2.1. Behavior of apriori algorithms

In Fig. 20, we compare the performance of variations of
our apriori-style algorithms. We plot both the execution
time and the number of candidates generated as we vary

2 http://www.almaden.ibm.com/cs/quest/syndata. html#assocSynData.

data.default

data.rept_0.1
data.rept_0.3
data.rept_0.5

100K 10 1K 10K
100K 10 1K 10K
100K 10 1K 10K
100K 10 IK 10K

100K 0 30
100K 0.1 30
100K 0.3 30
100K 0.5 30

data.exp.30 100K 4 SK 25K 10K 0 30
data.exp.50 100K 4 SK 25K 10K 0 50
data.exp.70 100K 4 SK 25K 10K 0 70
data.ncust_10 10K 10 1K 10K 100K 0 30
data.ncust_50 50K 10 1K 10K 100K 0 30
data.ncust_200 200K 10 IK 10K 100K 0 30
data.ncust_400 400K 10 1K 10K 100K 0 30

the minimum support threshold. We use log scale for y-axis
in the graphs. As the different variations of our proposed
techniques generate much smaller numbers of candidates,
the corresponding execution times become smaller as well.
The graph for the number of candidates shows that hash
filtering and quantity sampling reduce the number of can-
didate patterns by an order of magnitude. It also presents
that hash filtering reduces the number of candidate much
more significantly than quantity sampling. Furthermore,
the graphs for the number of enumerated candidate
patterns conform to the Lemmas presented in Section 4.
Our experimental result confirms the effectiveness of our

http://www.almaden.ibm.com/cs/quest/syndata.html#assocSynData

1742

a 10000 _
Apriori-QSP ——
= Apriori-Sampling -
3 Apriori-Hash %
*‘-%’ Apriori-All =
q) -
£ 1000 S
'_
C
kel
5
g 100}
X
L
10
08 09 1 1.1 1.2 1.6

min_support (%)

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

b 1e+08 . _
2 Apriori-QSP ——
= Apriori-Sampling -
g Apriori-Hash -
T 1e+07 Apriori-All =
2 -
© e
° *..
T 1e+06
S -
-4(-) -
o .
5 100000 ¢ .
-Q T,
€
S
< 10000 : . . .
08 09 1 1.1 1.2 1.6

min_support (%)

Fig. 20. Apriori-Style algorithms. (a) Execution time (s), and (b) Number of generated candidates.

proposed techniques for apriori style algorithms. Since
Apriori-All is the best performer among all variations of
apriori algorithms, we use Apriori-All as a representative
for apriori algorithms in the rest of this section.

Varying the value of k: We forced Apriori-All algorithm
to use a fixed value of k that is the number of sampled
quantity values and plot the execution time and number
of candidates generated for the minimum support thresh-
old of 0.6% in Fig. 21. As we increase the number of sam-
pled quantity values, the number of candidates and the
execution time decreases initially. This shows that quantity
sampling is having an immediate impact. However, as more
and more intervals are created, there is a diminishing
return, and eventually, adding more intervals only leads
to extra overhead, causing an increase in the number of
candidates and execution time. Moreover, notice that we
plot the number of candidates produced as a horizonal line
by Apriori-All (that computes the value of k£ that is the
square root of the number of quantity values in each item).
As shown in the figure, the lowest number of candidates
and execution times are very close to the ones with Apri-
ori-All that predicts the value of k as /L; as we illustrated
in Section 4.4.

2.3e+06 . : : — .
1] data.exp.70: Apriori-All(k) ——
£ data.exp.50: Apriori-All(k) s
2 data.exp.30: Apriori-All(k) -
o data.exp.70: Apriori-All e
Qq-a data.exp.50: Apriori-All ----s----
© data.exp.30: Apriori-All ---o---
©
3
S 2.25e+06 |
O
k)
@
Q9
[S
=]

2.2e+06 . : L . . .)

2 4 6 8 10 12 14 16 18

Fig. 21. Number of sampled quantities.

6.2.2. Behavior of PrefixSpan algorithms

Fig. 22 plots the execution time of PrefixSpan algo-
rithms with both level-by-level and bi-level projections.
The top half graphs present the execution times of level-
by-level projection algorithms and the lower half are for
bi-level projections. The figure illustrates that hash filtering
and sampling improves PrefixSpan algorithms significantly
regardless of level-by-level and bi-level projections. Thus,
we use PrefixSpan-All as a representative for PrefixSpan
algorithms in the rest of this section.

6.2.3. Comparison of apriori and prefix algorithms

We ran the Apriori-All, PrefixSpan (level-by-level) and
PrefixSpan (bi-level) with the synthetic dataset that was
generated with default values except the repetition level.
The repetition level can vary between 0 and 1.0. As we
increase the repetition level, it increases the number of can-
didates and frequent patterns. Furthermore, it increases the
average length of the frequent patterns. We present the exe-
cution times for the repetition levels of 0.1, 0.3 and 0.5 in
Fig. 23. When repetition level was 0.1, Apriori-All was
the winner, and PrefixSpan-All (bi-level) was the second
best.As we increase the repetition level more and more,
Apriori-All becomes the worst performer for small mini-

1800 PrefixSpan-QSP (level-by-level)
—~ 1600 | PrefixSpan-Sampling (level-by-level)
8 PrefixSpan-Hash (level-by-level)
o 1400 PrefixSpan-All (level-by-level)
o [\ PrefixSpan-QSP (bi-level)
g 1200 PrefixSpan-Sampling (bi-level)
= PrefixSpan-Hash (bi-level)
_ 1000 PrefixSpan-All (bi-level)
2 800t}
>
@ 600}
x
W 400t
200

O I I I n
08 09 1 1.1 12 1.6
min_support (%)

Fig. 22. PrefixSpan algorithms.

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726-1745

2000 f————————
1800
1600 |
1400 |
1200 |
1000 }
800 k.
600 | \
400
200

Apriori-All ——
PrefixSpan-All (level-by-level) - 1
PrefixSpan-All (bi-level) x

Execution Time (sec.)

1.1
min_support (%)

0.8

1.6

1743

b

10000 T T T T —
Apriori-All ——
9000 PrefixSpan-All (level-by-level) - 1
8000 | PrefixSpan-All (bi-level) x |
7000
6000
5000
4000
3000 f.
2000 [
1000

Execution Time (sec.)

O 1
08 09 1
min_support (%)

C 100000 T :

10000

1000 |

Execution Time (sec.)

100 ¢

10 —

PrefixSpan-All (level-by-level) -
PrefixSpan-All (bi-level) -

Apriori-All ——

08 09 1

1.1

1.2 1.6

min_support (%)

Fig. 23. Comparison of Apriori-All and PrefixSpan-All. (a) Repetition level = 0.1, (b) Repetition level = 0.3, and (c) Repetition level = 0.5.

mum support among the three algorithms. Furthermore,
for smaller minimum support, PrefixSpan-All (level-by-
level) becomes the best performer.

Scalability: In Fig. 24, we vary the number of sequences
for the minimum support threshold of 1.0% and plot the
execution times of PrefixSpan-All (level-by-level), Prefix-
Span-All (bi-level) and Apriori-All.The graph illustrates
that all three algorithms have linear scalability that is desir-
able for data mining algorithms.

1800 ——
1600 |
3 1400 |
1200 |
1000 |
800 |
600 |
400 |
200 |

I'DrefixSpan-A'II (level-by-level) ——
PrefixSpan-All (bi-level) - L 1
Apriori-All -

Execution Time (se

0 = ‘ ‘
10 50 100 200 |
Number of Customers('000), min-support=1%

Fig. 24. Number of sequences.

6.3. Real-life data set

For our real-life data experiments, we used a market
basket data for the period of six months obtained from a
Korean online marketplace company. As we discussed in
the introduction, we reduced the dataset to include only
the items which were purchased in multiple quantities by
at least a customer and only the transactions in which there
is at least an item with multiple quantity. In the reduced
dataset, the number of customers and the number of items
are 559,056 and 157,849 respectively. The average size of
sequences is 3.0 and the average quantity of items is 2.9.

Some sample patterns were already given in Section 1.1.
Thus, we focus only on performance issues here. We pres-
ent the execution times of the algorithms in Fig. 25, as the
minimum-support is decreased from 0.04% to 0.01%. The
shape of the result graph is similar with that of the syn-
thetic datasets.

6.3.1. Behavior of apriori algorithms

As shown in Fig. 25a, Apriori-QSP shows the worst per-
formance. Apriori-Hash is the best and slightly faster than
Apriori-All. The reason is that there are a huge number of
items compared to the size of the dataset. Since the dataset
has 559,056 sequences with the average size 3, an item of

1744

1 T T
0000 Apriori-QSP ——
Apriori-Sampling -
Apriori-Hash -
Apriori-All ~-a

1000 |

100 |

Execution Time (sec.) o

10
0.01

0.015 0.02 0.025 0.03 0.035 0.04
min_support (%)

C. Kim et al. | The Journal of Systems and Software 80 (2007) 1726—1745

400
350 H,
300 |

' ' Apriori-All ——
PrefixSpan-QSP (level-by-level) -~ L]
PrefixSpan-Sampling (level-by-level) -
(

PrefixSpan-Hash (level-by-level)

b
S
@
22
o) PrefixSpan-All (level-by-level)
E o500t PrefixSpan-QSP (bi-level) |
[PrefixSpan-Sampling (bi-level) ---e---
c PrefixSpan-Hash (bi-level) -«
& 200r PrefixSpan-All (bi-level) 1
3 150}
3 .
W 100 g.

50]|

0 I I I I I

0.01 0.015 0.02 0.025 0.03 0.035 0.04

min_support (%)

Fig. 25. Execution time for real-life dataset: (a) Apriori and (b) PrefixSpan.

157,849 items appears roughly ten times on the average,
and thus only few itemsets can be frequent. This results
that the hash-filtering method is very effective. For exam-
ple, when the minimum-support is 0.01%, 24,613,518
candidates among 24,613,876 candidates with length two
are removed through the filtering step by Apriori-Hash.
However, Apriori-All additionally performs the sampling
step after the filtering step. Since the candidates were
mostly removed in the filtering step, the number of candi-
dates reduced in the sampling step is very small, and the
saving obtained by reducing the number of candidates in
the sampling step is not larger than the time spent by the
sampling step itself. Therefore, Apriori-Hash is a little bit
faster than Apriori-All in the experiments. In conclusion,
the Apriori algorithms using our techniques run faster than
Apriori-QSP by an order of magnitude.

6.3.2. Behavior of prefixspan algorithms

In Fig. 25b, PrefixSpan algorithms with level-by-level
show better performance than PrefixSpan algorithms with
bi-level. It is also because there are a large number of items
compared to the size of the dataset, and only few short
itemsets can be frequent. Since the length of 95% of pat-
terns is one, the execution time of PrefixSpan algorithms
with bi-level mainly depends on the number of candidates
while that of level-by-level algorithm depends on the num-
ber of projections. In general, performing a projection is
more expensive in execution time than checking a candi-
date. However, in the experiments, since the number of
projections by PrefixSpan algorithms with level-by-level is
much smaller than that of candidates by PrefixSpan algo-
rithms with bi-level, PrefixSpan algorithms with level-by-
level are faster than PrefixSpan algorithms with bi-level.
For example, when the minimum-support is 0.01%, the
number of projections by Prefix-All with level-by-level is
5,853 while the number of candidates by Prefix-All with
bi-level is 24,619,887.

Among PrefixSpan algorithms with level-by-level, Pre-
fixSpan-QSP is the slowest, and other PrefixSpan algo-
rithms with level-by-level show similar performance.

PrefixSpan-Hash with level-by-level is the fastest because
of the same reason why Apriori-Hash is faster than Apri-
ori-All. All PrefixSpan algorithms with bi-level show nearly
the same performance as Apriori-All. Since the length of
almost all patterns is at most two, the performance of all
PrefixSpan algorithms with bi-level depends on that of
Apriori-All.

7. Conclusion

Discovering sequential patterns is an important problem
for many applications. For these applications, quantitative
attributes are often recorded in the data, which are ignored
by existing algorithms. We studied the problem of mining
sequential patterns with quantities and proposed naive
extensions to Apriori and PrefixSpan algorithms that are
introduced for traditional sequential pattern mining. How-
ever, these extensions are inefficient, as they may enumerate
the search space blindly. To alleviate the situation, we pro-
posed hash filtering and quantity sampling techniques that
improve the performance of the naive extended algorithms
significantly. Experimental results clearly demonstrate that
compared with the naive extensions, these schemes improve
the performance substantially.

References

Aggarwal, C., Agarwal, R., Prasad, V.V.V., 2000. Depth-first generation
of long patterns. In: International Conference on Knowledge Discov-
ery and Data Mining (KDD), Boston, MA.

Agrawal, Rakesh, Srikant, Ramakrishnan, 1994. Fast algorithms for
mining association rules. In: Proceedings of the VLDB Conference,
Santiago, Chile, September.

Agrawal, Rakesh, Srikant, Ramakrishnan, 1995. Mining sequential
patterns. In: International Conference on Data Engineering, Taipei,
Taiwan, March.

Agrawal, Rakesh, Srikant, Ramakrishnan, 1996. Mining sequential
patterns: generalizations and performance improvements. In: Interna-
tional Conference on Extending Database Technology (EDBT),
Avignon, France, March.

Bayardo, R.J., 1998. Fast subsequence matching in time-series databases.
In: Proceedings of the ACM SIGMOD Conference on Management of
Data, June.

C. Kim et al. | The Journal of Systems and Software 80 (2007) 17261745 1745

Burdick, D., Calimlim, M., Gehrke, J., 2001. MAFIA: a maximal frequent
itemset algorithm for transactional databases. In: IEEE International
Conference on Data Engineering, Heidelberg, Germany.

Cheng, Hong, Yan, Xifeng, Han, Jiawei, 2004. Incspan: incremental
mining of sequential patterns in large database. In: KDD, pp. 527-532.

Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T., 1996. Mining
optimized association rules for numeric attributes. In: Proceedings of
the ACM Symposium on Principles of Database Systems, June.

Garofalakis, Minos, Rastogi, Rajeev, Shim, Kyuseok, 1999. SPIRIT:
Sequential pattern mining with regular expression constraints. In:
Proceedings of the VLDB Conference, Edinburgh, UK, September.

Gouda, K., Zaki, M.J.,, 2001. Efficiently mining maximal frequent
itemsets. In: IEEE International Conference on Data Mining, San
Jose, CA, November.

Han, J., Pei, J. Yin, Y., 2000. Mining frequent patterns without candidate
generation. In: Proceedings of the ACM SIGMOD Conference on
Management of Data.

Mannila, Heikki, Toivonen, Hannu, Inkeri Verkamo, A., 1997. Discovery
of frequent episodes in event sequences. Data Mining and Knowledge
Discovery 1 (3).

Miller, R., Yang, Y., 1997. Association rules over interval data. In:
Proceedings of the ACM SIGMOD Conference on Management of
Data.

Park, Jong Soo, Chen, Ming-Syan, Yu, Philip S., 1995. An effective hash
based algorithm for mining association rules. In: Proceedings of the
ACM-SIGMOD Conference on Management of Data, San Jose, CA.

Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L., 1999. Discovering
frequent closed itemsets for association rules. In: International
Conference on Database Thoery, Jerusalem, Israel, January.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.-C., 2001. Prefixspan: mining sequential patterns efficiently by
prefix-projected pattern growth. In: International Conference on
Knowledge Discovery in Databases and Data Mining (KDD),
Heidelberg, Germany.

Pei, Jian, Han, Jiawei, Wang, Wei, 2002. Mining sequential patterns with
constraints in large databases. In: CIKM, pp. 18-25.

Srikant, Ramakrishnan, Agrawal, Rakesh, 1995. Mining generalized
association rules. In: Proceedings of the VLDB Conference, Zurich,
Switzerland.

Srikant, Ramakrishnan, Agrawal, Rakesh, 1996. Mining quantitative
association rules in large relational tables. In: Proceedings of the ACM
SIGMOD Conference on Management of Data, June.

Yan, Xifeng, Han, Jiawei, Afshar, Ramin, 2003. Clospan: mining closed
sequential patterns in large databases. In: SDM.

Zaki, Mohammed Javeed, 2001. SPADE: an efficient algorithm for mining
frequent sequences. Machine Learning 42 (1/2).

	SQUIRE: Sequential pattern mining with quantities
	Introduction
	Patterns from a real-life data set

	Related work
	Problem formulation
	Apriori-QSP and the two optimizations
	Apriori-QSP and a running example
	Hash filtering
	Quantity sampling
	Determining the number of sample points

	Apriori-all

	PrefixSpan-QSP and the two optimizations
	PrefixSpan algorithm
	PrefixSpan-QSP
	Hash filtering
	Quantity sampling
	PrefixSpan-all

	Experimental result
	Algorithms
	Synthetic data sets
	Behavior of apriori algorithms
	Behavior of PrefixSpan algorithms
	Comparison of apriori and prefix algorithms

	Real-life data set
	Behavior of apriori algorithms
	Behavior of prefixspan algorithms

	Conclusion
	References

