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ABSTRACT
Motivation: Analysis of array comparative genomic hybridization
(aCGH) data for recurrent DNA copy number alterations from a cohort
of patients can yield distinct sets of molecular signatures or profiles.
This can be due to the presence of heterogeneous cancer subtypes
within a supposedly homogeneous population.
Results: We propose a novel statistical method for automatically
detecting such subtypes or clusters. Our approach is model-based:
each cluster is defined in terms of a sparse profile, which contains the
locations of unusually frequent alterations. The profile is represented
as a hidden Markov model (HMM). Samples are assigned to clusters
based on their similarity to the cluster’s profile. We simultaneously
infer the cluster assignments and the cluster profiles using an
expectation maximization-like algorithm. We show, using a realistic
simulation study, that our method is significantly more accurate than
standard clustering techniques. We then apply our method to two
clinical data sets. In particular, we examine previously reported aCGH
data from a cohort of 106 follicular lymphoma patients, and discover
clusters that are known to correspond to clinically relevant subgroups.
In addition, we examine a cohort of 92 diffuse large B-cell lymphoma
(DLBCL) patients, and discover previously unreported clusters of
biological interest which have inspired followup clinical research on
an independent cohort.
Availability: Software and synthetic data sets are available at http:
//www.cs.ubc.ca/˜sshah/acgh as part of the CNA-HMMer
package.
Contact: sshah@bccrc.ca

1 INTRODUCTION
Copy number alterations (CNA) are structural variations expressed
in the form of DNA copy number differences at a particular region
in the genome. The search for “driver” CNAs in genetic material
derived from cancerous tissues is a major goal in diagnostic and
cytogenetic cancer research (Aguirre et al., 2004; Tonon et al.,
2005; Chin and Gray, 2008; Michels et al., 2007). Putative driver
CNAs are genomic amplifications or deletions ranging in size from
a few kilobases to whole chromosome arms that are recurrent in a
larger than expected proportion of patients. Their detection provides
candidate genetic markers that may play a role in tumorigenesis
and/or have clinicopathologic significance. In contrast, “passenger”
CNAs arise during the evolution of the tumour and may be present
due to genomic instability or other mechanisms. In the context
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of defining the driver CNAs, passenger CNAs represent (often
ubiquitous) “biological” noise that might obscure driver signals.
Using high resolution array comparative genomic hybridization
(aCGH) (Pinkel and Albertson, 2005), data consisting of tens to
hundreds of thousands of probes, putative driver CNAs can be
detected by identifying the subset of probes they span using a
number of algorithmic and statistical tools (Rouveirol et al., 2006;
Diskin et al., 2006; Shah et al., 2007; Klijn et al., 2008). These
analyses lead to a molecular profile of recurrent CNAs that help
define the molecular characteristics of the disease.

A challenging phenomenon is that, frequently, patient cohorts
exhibit heterogeneity in their molecular profiles. This has been
demonstrated in breast (Perou et al., 2000), ovarian (Khalique et al.,
2007), and prostate cancers, as well as lymphomas (Höglund et al.,
2004; Cheung et al., 2008), suggesting that the patients should
be stratified into molecular subtypes, where the patients within a
group share a common group specific driver CNA profiles. This
concept has been successfully applied many times over using gene
expression data (Perou et al., 2000; Wright et al., 2003), however it
has been relatively under-studied in aCGH data.

Considering a cohort of patients as a composite of a fixed set
of molecular subtypes has distinct advantages when determining
recurrent CNAs. By grouping or clustering the patients, recurrent
CNAs that might otherwise go undetected can be revealed. This
approach has the potential of determining CNAs that co-occur
within a subtype and CNAs that are mutually exclusive between
subtypes. Moreover, groups of patients can be assessed for distinct
clinical outcomes. Molecular subtypes often correlate with clinical
outcomes and in fact can, once identified, be considered as distinct
disease entities (Sorlie, 2004) with different prognoses and/or
response to therapy.

Recent discovery of clinically relevant molecular subtypes by
aCGH (Idbaih et al., 2008; Chin et al., 2007) suggest that
the inventory of CNA-derived molecular subtypes in cancer is
not complete. Large scale projects such as the Cancer Genome
Atlas Project (Collins and Barker, 2007) and the International
Cancer Genome Consortium (ICGC: http://www.icgc.org) are now
generating genomic array data sets from tumours from hundreds
of patients for specific cancer types, thereby providing excellent
potential for the discovery of new CNA-derived subtypes. In order to
take full advantage of these data, robust and accurate computational
algorithms for discovering molecular subgroups must be developed
to keep pace with the data generation.
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In this paper, we propose an approach to this problem based
on a mixture of HMMs (hidden Markov models); we call our
approach HMM-Mix. This extends our previous work (Shah et al.,
2006, 2007) by defining multiple HMMs, one per cluster, and
automatically assigning samples to clusters while simultaneously
inferring the profile of each cluster. Although the profiles are defined
in terms of “called” data (i.e., each location is classified as a loss, a
gain or neutral/ no change), the model works directly with the raw
aCGH data, and can re-call ambiguous data in the context of the
cluster to which it is assigned. This increases the statistical power
of our method to detect shared, but subtle, CNAs that may be lost
by methods that require discretization of the data as a preprocessing
step, as shown in our previous work (Shah et al., 2007) and by Klijn
et al. (2008).

In a simulation study, with realistic data, we show how our
method is more accurate than other clustering methods, including
hierarchical clustering (van Wieringen and van de Wiel, 2008) and
K-medoids (an approach not previously applied to data of this
kind). More importantly, we show how HMM-Mix reveals clinically
relevant subgroups in data derived from a cohort of 106 follicular
lymphoma (FL) patients, originally reported in Cheung et al. (2008),
and reveals previously unreported patterns of alteration in a cohort
of 92 diffuse large B-cell lymphoma (DLBCL) patients (Johnson
et al., 2008).

2 METHODS
We first describe our probabilistic model, and then how we
perform inference in this model. We also describe three other
approaches against which we compare our method: a simple K-
medoids method, a weighted K-medoids method, and a previously
described hierarchical clustering algorithm designed for aCGH (van
Wieringen and van de Wiel, 2008).

2.1 The HMM-Mix model
We represent the aCGH logratios as Y pt ∈ IR for each probe
t ∈ (1, . . . , T ) in the array and for each patient p ∈ (1, . . . , P ).
Each probe maps to unique genomic coordinates and is positionally
ordered along the chromosomes. Y 1:P

1:T represents the full data
matrix. For each datapoint we assume there is a discrete mapping
from Y 1:P

1:T → Z1:P
1:T where Zpt ∈ k and k is a discrete copy number

state ∈ {L,N,G} representing loss, neutral and gain.
The HMM-Mix model is a probabilistic generative model of

Y 1:P
1:T . We illustrate our conditional independence assumptions

using a graphical model in Figure 1, and we define all the
conditional distributions in Figure 2. See also Table 1 for a summary
of the notation.

The model generates the data as follows. First we sample a
group or cluster label for each patient, denoted Gp ∈ {1, . . . , G},
from a Multinomial with parameter πg . Here, G is the number of
clusters (see below for how we choose this), and πg is the vector
of mixing weights. Next, each group G generates a profile which is
represented as a sequence of states, Mg

t ∈ {L,B,G}, t = 1 : T ,
representing loss, background, or gain at probe t in the array. Probes
which are labeled loss are expected to contain mostly losses; probes
which are labeled gain are expected to contain mostly gains; probes
which are labeled background are expected to contain whatever the

Fig. 1. Proposed HMM-Mix model for clustering aCGH data, represented
as a directed graphical model (Gilks et al., 1996). Shaded nodes are
observed/fixed, unshaded nodes are hidden (unknown). The two boxes
represent repetition over patients and groups. Y pt ∈ IR is the observed
aCGH logratio at probe t in patient p. Zpt ∈ {L,N,G} is the discrete
state, representing whether probe t is a loss, neutral or gain. Given Zpt = k,
Y pt is assumed to be sampled from a class conditional Student-t distribution
with parameters µpk, λ

p
k and νk . Gp ∈ {1, . . . , G} is the group that patient

p belongs to, which is sampled from a Multinomial with parameter πG. θgt
is the Multinomial parameter over Zpt , which is sampled from a Dirichlet
with parameter αMg

t
, where Mg

t ∈ {1, . . . , C} represents the state of the
sparse profile for probe t in group g. Ag is the transition matrix for the
profile model. Conditional probability distributions are shown in Figure 2.
Description of variables is given in Table 1.

background distribution of loss, gains and neutrals is. Thus, the non-
background probes are the interesting ones.1 Since CNAs occur in
runs (span contiguous sets of probes), we model correlation between
consecutive locations using a first-order Markov chain on the Mg

t

variables. The transition matrix, Ag is a 3 × 3 matrix whereby
Ag(i, j) represents p(Mg

t = j|Mg
t−1 = i). We expect this matrix

to have large elements on the diagonal encouraging self-transitions
(which we model with a Dirichlet prior with parameters δA (see
Figure 1 and Table 1)), and thus runs of repeated states. Of course
the quantities of Ag are unknown at run time and are estimated
by fitting the model to the data (see Section 2.2). Therefore, the
off-diagonal elements of the matrix, including for example the
transitions {B → L,B → G,L → B, . . .}, are fully represented
and estimated accordingly.

1 Indeed,one of the primary goals of inference is to find the probes for which
p(Mg

t 6= B|D) is high; these probes represent a sparse profile defining the
signature for group g. Thus our model is somewhat similar to approaches
that perform simultaneous feature selection and clustering (Law et al., 2004;
Raftery and Dean, 2006).
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p(Mg
t |M

g
t−1 = i, A) = Mult(Mg

t |A(i, :), 1)

p(Mg
1 |πM ) = Mult(Mg

1 |πM , 1)

p(θgt |M
g
t = c, α1:3) = Dir(θgt |αc)

p(Zpt |G
p = g, θ1:Gt ) = Mult(Zpt |θ

g
t , 1)

p(Gp|πG) = Mult(Gp|πG, 1)

p(Y pt |Z
p
t = k, µpk, λ

p
k) = St(Y pt |µ

p
k, λ

p
k, νk)

p(µpk|λ
p
k, φ) = N (µpk|mk,

ηk
λpk

)

p(λpk|φ) = Gam(λpk|Sk, γk)

p(A(i, .)|δA) = Dir(A(i, .)|δA)

p(πG|δπ) = Dir(πG|δG)

Fig. 2. List of conditional probability distributions of HMM-Mix.

Symbol Meaning
Sk Set of probability vectors of length k
T Number of probes (measurements)
G Number of groups (clusters)
P Number of patients (samples)
t ∈ {1, . . . , T} Probe location
g ∈ {1, . . . , G} Group index
p ∈ {1, . . . , P} Patient index
c ∈ {L,B,G} State index
k ∈ {L,N,G} Call index
Mg
t ∈ {L,B,G} State of profile

θgt ∈ S3 Distribution over calls
Zpt ∈ {L,N,G} Called aberation
Y pt ∈ IR Raw data (log ratios)
Gp ∈ {1, . . . , G} Group assignment
πG ∈ SG Prior over groups
Ag ∈ S3×3 Transition matrix
µpk ∈ IR Mean of observations
λpk ∈ IR+ Precision of observations
νk ∈ IR+ DOF for observations (fixed)
πM Multinomial parameters (fixed)
αc,δG,δA Dirichlet hyper-parameters (fixed)
φ = (mk, ηk, Sk, γk)3k=1 Normal-Gamma hyper-params (fixed)

Table 1. Summary of variables. DOF = degrees of freedom

Once we have generated a discrete profile for each group, we
convert it into a distribution over calls. Specifically, state Mg

t of
the Markov chain “emits” a probability vector θgt , representing a
probability distribution over the “letters” {L,N,G}, representing
“called” aCGH states. In other words, θgt represents the relative
frequencies of calls we would expect at location t in group g. If
Mg
t = L, then θgt is sampled from a Dirichlet with parameters

αL = (aL, 1, 1), which is biased towards the letter L (by setting
aL � 1). Similarly, if Mg

t = G, then θgt is sampled from a
Dirichlet with parameters αG = (1, 1, aG), which is biased towards
the letter G (by setting aG � 1). If Mg

t = B, then θgt is set equal
to θg0 , representing the overall background, which is shared across

locations; θg0 is itself sampled from a Dirichlet with parameters
αB = (1, aB , 1), which is biased towards the letter N (by setting
aN � 1). Once we have generated the continuous profile for each
group, θgt , we are able to generate data for each patient. We sample
a call Zpt ∈ {L,N,G} from a Multinomial with parameter θgt .
Here, it would be appropriate to model Zp1:T as a Markov chain to
capture the spatial correlation in the data at the level of each patient.
However, as shown in our previous work Shah et al. (2007), this
makes inference expensive since all the Z chains become coupled.
Instead, we intitialise each Zp1:T using Markov chains (see below)
to capture the patient level spatial correlation and find that this
is sufficient for our task of capturing the group-specific recurrent
CNAs which are explicitly modeled as a Markov chain Mg

1:T .
Finally, we convert the discrete call into a continuous observation,

Y pt ∈ IR, by sampling from a Student T distribution; this is more
robust to outliers than a Gaussian. Specifically, if Zpt = k, we use
mean µpk, precision λpk and fixed degrees of freedom ν = 3. (We fix
the degrees of freedom to simplify the inference procedure; we have
found that our results are reasonably robust to the value of ν.) Note
that the parameters of the observation density are patient specific,
but are shared across locations. The observation parameters µpk and
λpk are sampled from a standard conjugate prior. Details on how we
set the hyper-parameters are outlined in Shah et al. (2007).

2.2 Inference
Although the model was described in terms of Mg

t generating
θgt , which in turn generates the Zpt calls, it turns out to simplify
inference if we analytically integrate out θgt . This is valid since θgt is
just a nuisance parameter, i.e., it is not a variable we are interested
in estimating. (Several other variables are also nuisance parameters,
but eliminating them would make inference harder, not easier.) The
modified conditional distribution is

p(Zpt |M
1:G
t , α1:3, G

p = g) =

Z
p(Zpt |θ

g
t )p(θgt |αc)dθ

g
t

=
1P
k α

k
c

KY
k=1

Γ(I(Zpt = k) + αkc )

Γ(αkc )
(1)

where c = Mg
t is the state of the Markov chain, and Γ() is

the Gamma function (see Brown et al. (1993) for details) and
I(Zpt = k) is an indicator function stating that the copy number
call for patient p at probe t is k. Henceforth, we assume θgt has been
removed from the model in this way.

Our primary objective is to infer a clustering, p(Gp|D), and a
profile for each cluster, p(Mg

1:T |D). One approach would be to use
Markov chain Monte Carlo (MCMC) to draw samples from the full
posterior, but this is too slow for our application, which has about
P ∼ 100 patients, and about T ∼ 27, 000 probes (over all the
chromosomes) per patient.

An alternative would be to use the expectation maximization
(EM) algorithm (Dempster et al., 1977). A natural approach would
be to treat all the unknown discrete variables (i.e., Mg

t , Zgt and
Gp) as “hidden variables”, and treat the rest (i.e., Ag ,πg ,µpk,λpk) as
“parameters”. Unfortunately, this makes the E step computationally
intractable, since all the HMMs Mg

1:T become coupled in the
posterior. However, conditional on a known clustering (i.e., setting
of Gp), the HMMs become independent. Hence we can estimate
the posterior profile for group g using the data that belongs to
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group g using the forwards-backwards algorithm. (This requires
marginalizing out Zgt as well, in order to derive the observation
model p(Y pt |M

g
t ), but this is straightforward.) Note that this

requires that we treat Gp as a “parameter” in the sense that we
estimate it in the M step rather than the E step. This requires that
we perform a hard-clustering of the patients, rather than a soft
clustering.

It turns out that even EM is too slow for our application,
because of the need to marginalize out Zgt , and because of EM’s
relatively slow convergence. We therefore decided to use the
iterative conditional modes (ICM) algorithm (Besag, 1986). This is
a simple coordinate ascent algorithm, in which we set each variable
to its most probable value given its neighbors in the graph. This
can be thought of as a deterministic version of Gibbs sampling.
Alternatively, it can be thought of as a version of Viterbi EM, in
which we compute the most probable value of Mg

1:T using the
Viterbi algorithm instead of computing posterior marginals using
forwards-backwards. More details on the algorithm can be found
below. Its complexity is O(TGP ) per iteration, where T in the
number of probes, G is the number of groups, and P is the number
of patients. In practice, it takes about 320 seconds to fit the model
to our DLBCL data (92 patients, 5 groups and 30,000 probes) on
a MacBook Pro with 2.6 GHz Intel Core Duo 2 using a Matlab
implementation.

We now give a full description of the algorithm.

2.2.1 HMM-mix algorithm - main loop The basic procedure
iterates over each node, and either samples from, or maximizes,
each full conditional distribution (details in Section 2.2.3).

1. Estimate profile: p(Mg
1:T |A, πM , Z

1:P
1:T , G

1:P )

2. Assign to cluster: p(Gp|πG, Zp1:T ,M
g
1:T )

3. Call data: p(Zpt |Y
p
t , G

p,Mg
t , µ

p
1:3, λ

p
1:3)

4. Fit observation model: p(µpk, λ
p
k|Y

p
1:T , Z

p
1:T , φ)

5. Fit transition model: p(Ag|Mg
1:T , δA)

6. Fit group prior: p(πG|G1:P , δG)

2.2.2 HMM-mix algorithm - initialisation

1. Set the hyper-parameters φ in a data-driven way, as explained
in Shah et al. (2007).

2. Estimate Zp1:T for each patient separately using Shah et al.
(2006).

3. Estimate Gp using WKM (see Section 2.4) on Z1:P
1:T .

4. Estimate Mg
t as follows. Given Z1:P

1:T for the patients in group
g, compute the entropy of each column. If the entropy is low
and most calls are losses, set Mg

t = L; if the entropy is low
and most calls are gains, setMg

t = G; otherwise setMg
t = B.

2.2.3 HMM-mix algorithm details We now explain each step in
more detail.

1. The most expensive step is the first one, which takes O(TGP )
time using the Viterbi algorithm. To compute this, we need the
observation likelihoods for each location, which are given by

Bg(t, c) =

PY
p=1

I(Gp = g)p(Zpt |M
g
t = c)

where p(Zpt |M
g
t = c) is the likelihood obtained by integrating

out θgt using Dirichlet hyper-parameter αc (Equation 1). We
then compute

Mg
1:T = Viterbi(Bg(:, :), Ag, πm)

2. Posterior over cluster assignments:

p(Gp = g|·) ∝ πgG
TY
t=1

p(Zpt |M
g
t , α1:3)

3. Posterior over calls

p(Zpt = k|·) ∝ p(Zpt = k|M1:G
t , α1:3, G

p = g)p(Y pt |µ
p
k, λ

p
k)

4. Update observation model parameters (as specified in
Archambeau (2005)), but for the 1D case for each patient p.
Use a Normal Gamma prior for p(µpk, λ

p
k) (see Figure 2), with

hyper-parameters (mk, ηk, Sk, γk). Compute the following
quantities:

ūpt (k) =
1 + νk

(Y pt − µ
p
k)2λpk + νk)

ρpt (k) = p(Zpt = k|·)

where ρpt (k) is computed in step 3. The maximum a posteriori
update equations then become:

µpk =

PT
t=1 ρ

p
t (k)ūpt (k)Y pt + ηkmkPT

t=1 ρ
p
t (k)ūpt (k) + ηk

λpk =

( PT
t=1 ρ

p
t (k)ūpt (k)(Y pt − µ

p
k)2PT

t=1 ρ
p
t (k) + γk − 1

+
ηk(µpk −mk)2 + SkPT
t=1 ρ

p
t (k) + γk − 1

)−1

5. Posterior over transition matrix. Define the sufficient statistics
as

Nij =

TX
t=2

I(Mg
t−1 = i,Mg

t = j)

Then

p(Ag|·) =

3Y
i=1

Dir(Ag(i, :)|Ni,: + δM )

6. Posterior over group prior. Define the sufficient statistics as

Ng =

PX
p=1

I(Gp = g)

Then

p(πG|·) = Dir(πG|N1 + δG,1, . . . , NG + δG,G)
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2.3 K-medoids
To compare HMM-Mix to a simpler method, we decided to use
the K-medoids (KM) algorithm applied to pre-called data, i.e., the
input is Zpt rather than Y pt . (We used our own HMM method (Shah
et al., 2006) to discretize each sample separately, but other methods
could be used.) As such, KM (as well as WKM and WECCA, both
described below) are two-step or sequential methods where in the
first step, the raw data are called as discrete copy number states and
in hte second step, the patients are clustered based on the called data.
K-medoids is just like K-means, except each cluster is represented
using one of the original samples (a discrete sequence of calls),
rather than as an arithmetic average of the samples, which does
not make sense for categorical data. K-medoids requires a distance
metric between a sample and a cluster centre (prototype). We used
Hamming distance: d(i, j) =

PT
t=1 I(Zit = Zjt ). Since K-medoids

is prone to getting stuck in local minima, we used 100 restarts, and
returned the clustering with the lowest overall distortion. To choose
K (the number of clusters), we used the Silhouette coefficient
(van der Laan et al., 2003) (see Section 2.6).

2.4 Weighted K-medoids
The KM algorithm described above treats all probes (features)
equivalently when computing the distance function. However, we
assume that only a small subset of features are important in
determining the distance between 2 patients. We therefore also tried
a weighted distance function, d(i, j) =

PT
t=1 wtI(Zit = Zjt ). We

call the resulting method weighted K-medoids (WKM).
The weights are chosen in the following heuristic way. We

first compute the empirical distribution over calls at each location,
ft. We then compute the entropy of this distribution, Et =
−

P
k=L,N,G ft(k) log ft(k). Finally, we assign high weights to

locations which are highly entropic: wt = σ(Et/α), where σ(η) =
1

1+e−η is the sigmoid function, and α is a constant that controls the
steepness of the sigmoid. (We found α = 0.25 gave good results.)
The use of the sigmoid function ensures 0 ≤ wt ≤ 1.

The reason that we assign high weights to the entropic locations
is as follows: locations which are useful for distinguishing the
groups must differ across patients, and hence are likely to
have a multimodal distribution, whereas locations which are not
discriminative are likely to have all possible values (be closer to
uniform), and therefore have lower entropy.

In our experimental results below, we show that WKM is much
better than KM, although not as good as our model-based approach.
However, because of its simplicity and speed, we use it as a way to
initialize our model-based approach.

2.5 Hierarchical clustering
In recent work, van Wieringen and van de Wiel (2008) introduce
a system called “Weighted clustering of called array CGH data”
(WECCA). This represents the first clustering approach to be
tailored specifically to the aCGH data and is a specialized
implementation of hierarchical agglomerative clustering. The
authors define a weighted form of similarity, similar in spirit to the
weighted Hamming distance described above, although the weights
are expected to be provided by the user, rather than automatically
calculated.

2.6 Choosing the number of groups
The K-medoids and our HMM-Mix model both require that the
user specify the number of clusters G. (Hierarchical clustering does
not need this information, although one must specify some other
mechanism for choosing where to cut the dendogram.) Since K-
medoids is not a probabilistic model, one can only use heuristics
methods for pickingG. We use the Silhouette coefficient (Tan et al.,
2005), which computes a measure of quality that considers both
cohesion (how similar the points in a cluster are) and separation
(how different the clusters are). In particular, we compute S(G) for
a range of values of G, and pick the G with maximum score.

3 DATA
3.1 Simulated data
To test and compare performance of the various algorithms where
the true clustering was known, we generated data and embedded
group-specific patterns of recurrent CNAs. To avoid circularity
that can arise from generating data from the model directly, we
created data sets based on real aCGH data derived from mantle
cell lymphoma cell lines reported in de Leeuw et al. (2004) and
used similarly in Shah et al. (2007). We first extracted the data
from chromosome 21 (chosen because it was reported to have
relatively few alterations), resulting in a data set of 8 samples each
with 672 probes. For each simulated data set, we performed 100
random draws (simulating patients) from the eight cell lines. For
each of the 100 patients, we shuffled the 672 probes and randomly
assigned the patient to one of G groups. For each group, we
preset coordinates of one recurrent gain and one recurrent loss.
These group specific coordinates defined the profile for the group.
The alterations were embedded into each patient’s data at their
group-specific coordinates, plus a random offset number of probes
(sampled from a Gamma distribution with a mean of 10 probes).
This offset was meant to simulate the fact that recurrent CNAs often
have different patient-specific start and end coordinates, but have
segments that intersect across patients. Losses were generated by
shifting one standard deviation down from the neutral state, and
gains were shifts of one standard deviation up. Finally, for each
patient, we randomly embedded alterations of length L at locations
different than the group-specific alterations in order to simulate
patient-specific ’passenger’ alterations expected to be unrelated to
the group profile. We created 10 replications with G = 3, 5, 10 and
L = 50, 75 yielding 60 data sets. These data and the ground truth
cluster assignments are included in the Supplemental Material.

With these ground truth data sets in hand, we evaluated clustering
accuracy using the Jaccard coefficient as described by Tan et al.
(2005). (This is a number between 0 and 1, where 1 is the best
possible score, corresponding to perfect correspondence to the true
clustering.)

3.2 Clinical data
We use two clinical data sets: FL (see Figure 4) and DLBCL (see
Figure 5).

The FL data were derived from 106 samples taken at time
of diagnosis from patients with FL. These data were previously
reported in Cheung et al. (2008) and were expected to fall into at
least 4 genetic subtypes (Höglund et al., 2004). A characteristic
of FL is that in a subset of patients, the tumour undergoes
a transformation to a more aggressive subtype that consistently
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Fig. 3. Distribution of accuracy of WECCA, KM, WKM and HMM-Mix
for synthetic data generated with six different parameter settings. HMM-
Mix was the most accurate for all six settings (see Table 2 for details).
Each data set was composed of P = 100 patients with 672 probes each.
From left to right there were G = 3, 5, 10 embedded groups in the data.
The top row had randomly placed CNAs of L = 50 and the bottom row
with L = 75. Distributions of Jaccard coefficient over 10 replicates of the
G,L settings are shown as notched box plots where non-overlapping notches
indicate statistical difference of the medians (red horizontal lines) with 95%
confidence.

correlates with inferior survival outcome. Developing a prognostic
CNA profile predictive of transformation is therefore of great
clinical interest.

The DLBCL data (Johnson et al., 2008), contains aCGH data for
92 patients with de novo DLBCL, all treated uniformly with multi-
agent chemotherapy (CHOP) and anti-CD20 monoclonal antibody
rituximab.

All clinical data were produced using the SMRT array platform
(Ishkanian et al., 2004) and contain approximately 27,000 probes
per sample.

4 RESULTS
4.1 Simulated data
Figure 3 shows the distribution of the Jaccard coefficient resulting
from using WECCA, KM, WKM and HMM-Mix on the 10
replicates for each setting of G, the number of groups, and L,
the length of the distracting patient-specific passenger alterations.
Table 2 contains the mean and standard error for each of the
six datasets for the four methods. HMM-Mix showed the highest
accuracy for all six settings. WhenG = 3, L = 50 (Fig 3A), HMM-
Mix and WKM were more accurate than WECCA at recovering
the ground truth classes, and statistically more accurate than KM
(one-way ANOVA, p< 0.01). For G = 3, L = 75 (Fig 3D) and
G = 5,L = 50 (Fig 3B), HMM-Mix was more accurate than

WKM and statistically more accurate than both KM and WECCA
(p< 0.01). For G = 5, L = 75 (Fig 3E), G = 10, L = 50
(Fig 3C) andG = 10, L = 75 (Fig 3F), HMM-Mix was statistically
more accurate than all other methods (p< 0.01). However, for
G = 10, L = 75 all methods performed poorly, since this problem
is much harder than the others: there are only 10 samples per group,
and each sample is “corrupted” with a fairly long (L = 75) random
CNAs. We repeated these experiments using P = 500 patients, and
all methods improved in their accuracy, although the overall relative
rankings are the same (results not shown).

HMM-Mix was generally more robust to the size L of the
randomly placed passenger alterations than the other methods,
suggesting that the model is able to maintain its ability to detect
group-specific alterations in the presence of additional structured
noise.

We also tested the robustness of HMM-Mix to initialization. In
particular, we initialized with both KM and WKM, and found that
the final results were nearly identical, despite the fact that WKM
was significantly more accurate than KM.

This suggests that in these settings, HMM-Mix is able to
overcome a poor initialization, most likely due to its ability to re-
estimate the calls and adapt the feature selection during inference.
We suspect that these characteristics allow it to escape from local
optima more readily than WKM, which cannot re-estimate the calls
and requires the feature selection to be fixed ahead of time. Thus,
these results suggest that the joint inference of group assignments
and copy number calls used by HMM-Mix is more robust than
the sequential methods of WECCA, KM and WKM, all of which
perform a two-step method of first calling the data, then clustering.

4.2 FL data
We applied HMM-Mix to the FL cohort of 106 patients (Cheung
et al., 2008). We initialized the model using WKM with 100
multiple restarts and we determined the number of groups to be
6 using the maximum Silhouette coefficient over G = (2, ..., 8).
Figure 4 shows the WKM initializations, and the final results of
HMM-Mix. In particular, Figure 4A shows the initial Z1:P

1:T matrix
where rows are patients and columns are probes. The rows are
ordered according to their WKM cluster assignments. The green,
red and black probes are predicted losses, gains and neutrals
respectively. Figure 4B shows the converged estimates of HMM-
Mix where the rows have been ordered according to the HMM-Mix
cluster assignments, and the data displayed are the re-estimated calls
in the presence of the profiles. Figure 4B (top) shows the profiles
of each group and it is clear that the re-estimated calls are heavily
influenced by their corresponding profiles.

The resulting groups can be summarized as follows: (1) +7
(meaning gain of chromosome 7) (7 patients); (2): a ’null’ group
with no recurrent alterations (67 patients); (3): a group with +18
(19 patients); (4): a group with +1q and a small loss at 1p36
(7 patients); (5): a singleton outlier (1 patient); and (6): +6p/6q-
(5 patients). Notably, +1p, +6p/6q-,+7, and +18 have previously
been established as cytogenetic pathways to the initiation and
development of FL using principal component analysis applied to
data generated by a difference laboratory technique called G-banded
karyotyping (Höglund et al., 2004).

The clusters produced by HMM-Mix set mirror those reported in
Cheung et al. (2008). In that paper, the WKM method was used
to perform the clustering, but the method used significant human
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Table 2. Results for simulation study showing means and std errors of the Jaccard coefficient

Dataset WECCA KM WKM HMM-Mix ANOVA P-val

G=3 L=50 0.959±0.018 0.916±0.027 0.996±0.004 0.996±0.004 4.2 × 10−3

G=5 L=50 0.692±0.048 0.734±0.034 0.932±0.018 0.976±0.007 5.7 × 10−8

G=10 L=50 0.296±0.022 0.375±0.033 0.317±0.031 0.580±0.065 6.7 × 10−5

G=3 L=75 0.611±0.030 0.828±0.029 0.923±0.022 0.965±0.009 4.3 × 10−12

G=5 L=75 0.460±0.019 0.548±0.057 0.730±0.043 0.964±0.011 6.2 × 10−11

G=10 L=75 0.131±0.010 0.202±0.010 0.138±0.010 0.223±0.032 1.3 × 10−3

Fig. 4. Clustering of FL data showing the initial calls and WKM clusters (A), the converged estimates of the calls (B), clusters and profiles by HMM-Mix and
the associated time to transformation Kaplan-Meier plots for each group (C). (A) The calls and clusters depicted as a heat map for WKM with G=6. The rows
of the data indicate the patients and the columns indicate the probes. Red indicates gain, green loss and black neutral. The rows are ordered according to their
assigned groups as predicted by WKM. (B) The posterior probability of the calls (where red represents p(Zpt = red), blue represents p(Zpt = neutral)) and
green represents p(Zpt = loss), the clusters and the profiles (top) for theG=6 groups. In comparison to (A) the clusters are readily apparent from the data, they
appear to be tighter and the re-estimated calls are clearly influenced by the profiles, resulting in far less noisy, and far more interpretable output. Importantly,
4 of the 6 groups (labeled on right) recapitulate the previously reported subtypes for FL. Group numbers that correspond to the time to transformation curves
(C) are annotated on the right of (B). Groups 1 and 6 both had statistically significantly shorter time to transformation. (C) Time to transformation Kaplan-
Meier curves for each group of patients as predicted by HMM-Mix for the FL cohort. Groups 1 and 6 (black and yellow) had significantly reduced time to
transformation by log-rank test with 5 degrees of freedom. (The green curve corresponds to the singleton group shown in (B). These correspond respectively
to the groups characterized by +7 and 6p-/6q+ and suggests that these recurrent CNAs confer inferior prognoses to the patients in these groups.
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Fig. 5. Clustering of 92 DLBCL profiles into 5 groups. Comparison between
WKM initialization (A) and HMM-Mix (B) clearly shows HMM-Mix ability
to reduce noise and report only highly conserved within-group patterns. The
bottom cluster for HMM-Mix (B) shows a potentially novel subtype with
gain of chr +3/+18. The colours for both (A) and (B) are as described in
Figure 4.

expertise both in determining the initial called data, Z1:P
1:T , and in

defining the weighting terms, w1:T . In addition, the number of
groups (5) was chosen using supporting evidence from the literature.
By contrast, HMM-Mix is fully automated, with no user-settable
parameters, yet it managed to recover essentially the same results of
this previous method.

As further validation of the biological significance of the clusters
found by our method, we computed Kaplan-Meier curves for each
group of the time to transformation (TTT) (defined as the time from
diagnosis to clinical or pathological endpoint: transformation to
the more aggressive subtype). We show the results in Figure 4(C).
We see that groups 1 and 6 (black and yellow curves) display a
significantly shortened TTT to the others (log-rank test, p<0.01),
indicating the profiles characterized by +7 and +6p/6q- are potential
unfavourable prognostic indicators for FL. Note that by WKM,
group 1 (shown as the top group in Figure 4) which results in
the HMM-Mix group characterized by +7 only contains 2 patients
which is inconsistent with both Cheung et al. (2008) and Höglund
et al. (2004) and might therefore be considered less plausible
than the HMM-Mix results. The resulting clusters for the 106
patients predicted by WKM and HMM-Mix are included in the
Supplemental Material.

4.3 DLBCL data
Figure 5 shows the results of applying WKM and HMM-Mix
to the 92 patients in the DLBCL cohort. We see that HMM-
Mix is achieving the desired effect of focusing on putative driver
or highly recurrent within-group alterations, while ignoring non-
recurrent passenger alterations, thus clearly separating signal from
noise. The data fell into 5 distinct groups characterized by a ’null’
group with no discernible pattern, and four groups characterized
by 1p-/+1q/+2p/+11q/15-, +7, 6q-, and +3/+18. The last group is
a previously unreported pattern of alteration in DLBCL. Previous
work had identified that both changes show increased frequency
in the so-called activated B cell (ABC) subtype of DLBCL (Bea
et al., 2005), but had not recognized that these two alterations travel
together and may indeed define a unique molecular subgroup.

5 DISCUSSION AND FUTURE WORK
The HMM-Mix model presented in this paper is effectively able
to discover subgroups and their defining profiles given a set of
aCGH data derived from a patient cohort. We showed the model’s
capability of finding clinically relevant subtypes in an FL cohort
and a previously undescribed subtype in the DLBCL cohort.
We demonstrated how the joint inference procedure of inferring
copy number calls, cluster assignments and profiles, coupled with
adaptive feature selection, makes HMM-Mix significantly more
accurate than partitioning and hierarchical clustering methods.
Future work will entail experimental validation and further
exploration of the +7 and 6p-/6q+ subgroups detected in the FL
cohort for prognostic significance for TTT, and determining clinical
relevance of the DLBCL subgroups we reported.

Extension of HMM-Mix to high density SNP arrays (e.g.,
Affymetrix 6.0) will be of interest, as patterns of both genotype
and copy number can be elucidated. HMM-based models for
SNP arrays introduced in Colella et al. (2007) and Scharpf et al.
(2008) will be investigated for extension to the clustering setting
using the HMM-Mix framework introduced here. Compared to the
BAC arrays used in this study, genotyping array probes are much
less uniformly distributed across the chromosome. Thus, location
specific transition matrices with distance based priors as suggested
by Colella et al. (2007) will be a necessary feature of this work.
(Note that most likely owing to the fact that the platform used to
generate the data in this study has relatively uniformly distributed
probes, we found that non-stationary transition matrices made no
difference to our results.) In addition, we will be applying the
model to a large cohort of breast tumours for which we have
generated Affymetrix SNP 6.0 data with the goal of uncovering
novel molecular subtypes. Note that the CNAs in lymphoma entities
we studied as part of this paper can be dominated by chromosome
arm or whole chromosome events. Application to breast cancer will
allow us to assess how well the model generalises to cancers that
have much more complex genomes.

Finally, we are investigating the use of variational methods
Bishop (2006) for inference that will at once obviate the need to
hard assign each patient to a group and preserve the computational
efficiency of the inference algorithm. We expect this extension to
provide full posterior distributions over the quantities of interest thus
better modeling the uncertainty of these estimates. In addition, we
are investigating approaches to model selection to avoid having to
choose the number of groups at run time.
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