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ABSTRACT

Motivation: Classification is widely used in medical applications.

However, the quality of the classifier depends critically on the accurate

labeling of the training data. But formanymedical applications, labeling

a sample or grading a biopsy can be subjective. Existing studies

confirm this phenomenon and show that even a very small number

of mislabeled samples could deeply degrade the performance of

the obtained classifier, particularly when the sample size is small.

The problem we address in this paper is to develop a method for auto-

matically detecting samples that are possibly mislabeled.

Results: We propose two algorithms, a classification-stability algo-

rithm and a leave-one-out-error-sensitivity algorithm for detecting

possibly mislabeled samples. For both algorithms, the key structure

is the computation of the leave-one-out perturbation matrix. The

classification-stability algorithm is based on measuring the stability of

the label of a sample with respect to label changes of other samples

and the version of this algorithm based on the support vector machine

appears to be quite accurate for three real datasets. The suspect list

produced by the version is of high quality. Furthermore, when human

intervention is not available, the correction heuristic appears to be

beneficial.

Contact: malossin@dit.unitn.it

1 INTRODUCTION

With the advances of high-throughput devices for measuring gene
and protein expression, numerous medical or health research groups
have amassed large amounts of genomic data. The hope is that such
data can be used to infer regulatory pathways in cells, identify novel
targets for drug design and improve the diagnosis, prognosis and
treatment planning for those suffering from the disease. However,
many groups find out that the analysis of such data is not as straight-
forward as initially expected. There are in general three main
challenges for analyzing such data.

! High dimensionality p: high-throughput devices for measuring
gene or protein expression collect a large number of measure-
ments, or variables, per patient. For example, the number of
probe sets in the Affymetrix U133 Plus 2.0 Array is p > 54000.

! Small sample size n: it is not uncommon for medical applica-
tions involving human samples to have small sample sizes, by

which we mean n < 100 [e.g. West et al. (2001); Golub et al.
(1999); Vapnik et al. (2002); Alon et al. (1999); Alizadeh
et al. (2000); Ramaswamy et al. (2003)]. One reason is the
availability of patients and samples [e.g. early stage lung
cancer analysis Chan et al. (2004)]. Another reason is the
potential high cost of preparing and maintaining the samples
in the ‘wet’ laboratory (e.g. micro-dissection and RNA
extraction) as well as the cost for the preparation of microarray
experiments.

! Potential labeling errors: Classification is widely used in
medical applications. However, the quality of the classifier
depends critically on the accurate labeling of the training
data1. But for many medical applications, labeling a sample
or grading a biopsy can be subjective. For example, West
et al. (2001) analyzed 49 breast tumor samples and identified
9 samples as possibly having the wrong labels.

The problem we address in this paper is to develop a method for
automatically detecting samples that are possibly mislabeled. As
shown in Malossini et al. (2005), even a very small number of
mislabeled samples could deeply degrade the performance of the
obtained classifier. Furthermore, the smaller the sample size, the
greater the impact of a mislabeled sample.
The problem of detecting uncertainty in data labeling has been

approached in many different directions. Brodley and Friedl (1999)
used a set of different classifiers that serve as noise filters for the
training data. Then the final classifier is trained on the training set
where instances identified as uncertain are removed. Muhlenbach
et al. (2004) proposed a filtering algorithm where the suspect
samples were removed or relabeled before the learning stage. An
example is considered suspect when in its neighbourhood, defined
by a geometrical graph, the proportion of examples of the same
class is not significantly greater than in the database itself. Sanchez
et al. (2003) proposed different methods, based on the nearest
neighbour classifiers, in order to improve the quality of the training
data and to reduce the overlapping among regions of different
classes. Venkataraman et al. (2004) used a single optimal classifier,
the SVMwith a linear kernel on multiple representations of the data.
Each representation is built by choosing different subspaces of the
whole feature space, then a leave-one-out (LOO) cross-validation is
used to identify mislabeled data. However, in all these approaches,

!To whom correspondence should be addressed.

1 In this paper, we only focus on binary classification; the idea could be

generalized to a multi-class situation.
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the datasets used were characterized as having n > p. It is unlikely
that any of these approaches work effectively for the different, and
arguably tougher, situation when p " n.
One possible approach is to apply dimensionality reduction

algorithms (such as principal component analysis), or feature selec-
tion algorithms to first reduce the dimensionality of the data. But it
is well-known that dimensionality reduction algorithms do not
perform well for unclean data (outliers or mislabeled samples
can biased the resulting list of features); see for example the
study by De la Torre and Black (2001). Similarly, standard feature
selection algorithms assume that all samples are correctly labeled,
and can be significantly affected by the presence of mislabeled
samples.
Some mislabeled samples may be detected as outliers. (In

general, a mislabeled sample need not be outlying, and an outlier
is not necessarily mislabeled.) Barnett and Lewis (1994) give a
survey of outlier detection techniques in conventional statistics.
Outlier detection for high-dimensional data has received a lot of
attention in recent years. For instance, Knorr and Ng (1998)
considered distance-based outlier detection, where the notion of
outlier is strongly dependent on the underlying distance metric.
Aggarwal and Yu (2001) studied the problem of outlier detection
for high-dimensional data using projections into subspaces. How-
ever, this approach is clearly not scalable for large p. Furthermore,
to use a distance-based approach, one has to define a distance
function between samples. In a high-dimensional space, it is
often difficult to do so. Thus, an outlier detection method that
requires an explicit definition of distance may not be effective
for the situations we are dealing with here.
To overcome this compounding situation of high dimensionality

with a small number of samples, our approach does not rely
on distance computation. Instead, our approach is based on
examining classifiers in combination with a LOO procedure and
a flipping strategy. More specifically, we make the following
contributions.
We introduce the Leave-One-Out Perturbed Classification

matrix (LOOPC matrix). To compute the entry LOOPC[i, j], we
first flip the label yi 2{#1, +1} of the sample xi. Then leaving
sample xj out, a classifier is built with the flipped sample xi, and
is then used to predict the label of xj. We choose to use a state-of-
the-art kernel algorithm, the support vector machine (SVM), in its
simplest form, where the kernel used is linear. The column
LOOP[!, j] contains the prediction for xj based on different per-
turbed datasets, whereas the row LOOPC[i, !] are the predictions of
different samples based on the same perturbed datasets with xi
flipped.
We then propose two algorithms for analyzing the LOOPC

matrix. The first algorithm, called the Classification-stability
algorithm (CL-stability), focuses on analyzing each column to
produce a list of suspect samples. The main idea behind this
analysis is to assess the stability (of the classification) of a sample
with respect to a small perturbation (just one flip) of the other
samples of the dataset. Good samples should be consistently clas-
sified even when a small perturbation is introduced. The second
algorithm, called the Leave-One-Out-Error-sensitivity algorithm
(LOOE-sensitivity), focuses on analyzing each row to produce a
list of suspect samples. The main idea behind this row analysis is
that if the sample is mislabeled, then flipping it should improve the
prediction power of the resulting classifier.

We provide an empirical evaluation of the two algorithms
using real and synthetic datasets. Under various circumstances,
we evaluate the precision and recall performance of the algorithms
whenever ‘ground truth’ is available. By the term ‘ground truth’
we mean here a list of suspect samples which have been validated
using biological knowledge or tests. In short, the classification-
stability algorithm performs well with real datasets.
While the two algorithms are designed for detecting possibly

mislabeled samples, the remaining issue is how to recover
once those samples have been identified. For situations when no
human intervention is possible, we propose a simple heuristic to
rebuild a new classifier. Our preliminary experimental results
using real datasets indicate that this simple heuristic can improve
prediction accuracy.

2 METHODS

2.1 Algorithm for creating the LOOPC matrix
The basic ingredient of our algorithms is the construction of the LOOPC

matrix. The main idea behind such matrix is to flip the label of a single

sample in the training set, to construct a classifier, and finally to apply the
resulting perturbed classifier to the left-out sample. Hereafter we assume that

there are n samples of the form (xi, yi) where xi is the vector of features and
yi is the label of the sample. We denote the LOOPC matrix as L, which is

an n · nmatrix. Algorithm 1 describes the construction of the LOOPmatrix,
where the Flip function changes the label of the sample (we are here con-

sidering only binary classification problems), and C#j
Si
ðxjÞ denotes the clas-

sification outcome of a classifier trained on Si\ðxj‚ yjÞ and applied to xj. In
this way each row of the resulting matrix represents the effect of the per-
turbation on the sample (xi, yi) to the whole dataset. Each column represents

the behaviour of the sample (xj, yj) with respect to the flipping of other

samples of the dataset. Note that the diagonal elements represent the unper-
turbed LOO classification of the samples. At the end of the algorithm, the

LOOPC matrix is as follows:

L ¼

C#1
S1
ðx1Þ C#2

S1
ðx2Þ . . . C#n

S1
ðxnÞ

C#1
S1
ðx1Þ C#2

S2
ðx2Þ . . . C#n

S2
ðxnÞ

..

.

C#1
Sn
ðx1Þ C#2

Sn
ðx2Þ . . . C#n

Sn
ðxnÞ

0

BBBB@

1

CCCCA
:

It is easy to see that the algorithm requires n2 training phases and testing
phases. However, because we are dealing with ‘small’ datasets, this proce-

dure is still computationally feasible. It should be obvious that Algorithm 1

is easily parallelizable.

As a very simple example, consider five patients subject to a diagnosis
of a rare disease. Suppose that patients 1 and 3 are diagnosed as having

the disease D and that patients 2, 4 and 5 are diagnosed as healthy H. To
construct the first row of L, the state of the first patient is flipped from D to
H. Then the LOO procedure is applied to the other patients to predict the

label of the left-out patients with the resulting classifiers. For example,

the first row shown below indicates that, when perturbing the diagnosis

Algorithm 1 Compute the LOO Perturbed Classification matrix L

Require: S :¼ {(xk, yk): 1 ' k ' n}
1: for i :¼ 1 to n do
2: Si :¼ Flip(S, i)
3: for j :¼ 1 to n do
4: L [i, j] :¼ C#j

si
ðxjÞ

5: end for
6: end for
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of the first patient, all the labels remain correct, except for patient 2. The

remaining rows are similarly obtained.

L ¼

D D D H H
D H D H H
D D D D H
D D D H H
D D D H H

0

BBBB@

1

CCCCA
:

2.2 The CL-stability algorithm for analyzing L

Given the LOOPC matrix L, the goal of applying the CL-stability algorithm
is to assess the stability of a sample with respect to a small perturbation

(just one flip) of the other samples of the dataset. A good or stable sample

should be consistently classified, with respect to its original label, and not be
easily affected by the correctness of 1 flipped sample elsewhere in the

dataset. The CL-stability algorithm identifies a list of samples failing this

requirement.

To be specific, for a given sample xj, the quantities n+ and n# count the
number of times that xj is classified as ‘+1’ and ‘#1’ respectively. We use

‘+1’ and ‘#1’ to represent the two possible states of classification. Sample

xj is considered a statistically significant suspect of mislabeling if the

number of mis-classifications exceeds a certain threshold, which is deter-
mined as follows. We consider a set of n completely independent random

classifiers; their outcomes are ‘+1’ or ‘#1’. Thus, the distribution can be

modeled as a binomial distribution with p ¼ 0.5. We say that a sample is
a suspect if the mis-classification frequency deviates from the mean by >3
SD [this is a condition frequently used in outlier detection in conventional

statistics, see Barnett and Lewis (1994)]. The exact formula is defined as

an ¼
n

2
þ 3

2

ffiffiffiffi
n:

p

2.2.1 Aggregated predictors and CL-stability algorithm The

results of the CL-stability algorithm is an aggregated prediction [see e.g.

Breiman (1996) for the theory of bagging predictors]. Bagging predictors

is a method for aggregating different predictors where the learning is per-
formed on bootstrap replicates of the training set. The resulting predictor

outcome is a majority vote across the bootstrapped predictors. Aggregating

can transform good predictors into nearly optimal one and bad predictors
into worse one. Moreover, bagging unstable classifier usually improves

them. In this scenario, the CL-stability algorithm can be viewed as a boot-

strapping procedure where the bootstrap training set is substituted with a

perturbed training set. Also the voting scheme is different, because in order
to account for the flipping of the labels a threshold is calculated (an) which

permits to discriminate the random classifier.

2.3 The LOOE-sensitivity algorithm for analyzing L
The LOOPC matrix can also be analyzed exploiting the information

contained in each row of the matrix. For a given sample xi, the i-th row

of L gives the classification of xi (for each j :¼ 1, . . . , n) if the label
of xj flipped. The LOOE-sensitivity algorithm produces a list of

samples with suspect labeling by measuring whether flipping the label

significantly improves prediction accuracy. More specifically, it considers
four cases:

(1) xj is correctly predicted without flipping xi (i.e. yj ¼ L[j, j]), and the

prediction of xj remains correct even after xi is flipped (i.e. yj¼ L[i, j]);

(2) xj is incorrectly predicted without flipping xi (i.e. yj 6¼ L[j, j], but the
prediction becomes correct with a flip of xi (i.e. yj ¼ L[i, j]);

(3) this is the reverse of the above situation case 2 when flipping ximakes
an initial correct prediction of xj incorrect and

(4) the prediction of xj remains incorrect whether xi is flipped or not.

By flipping xi, samples in the second case give concrete ’positive’ evidence

for flipping xi. However, samples in the third case correspond to ‘negative’

evidence. Samples in the remaining two cases are ‘neutral’ because predic-

tion accuracy is unchanged whether xi is flipped or not. The last step of the
LOOE-sensitivity algorithm is to return all the samples where the difference

between positive and negative evidence exceeds a threshold bn·bn is a

parameter of the algorithm chosen by the user.

2.4 Datasets and parameter settings
We tested our algorithms on three different well-known real datasets: (1) A

breast cancer dataset from West et al. (2001), which consists of 49 tumor

samples classified as positive to estrogen receptor ER+ or negative ER#.
The expression levels of 7129 genes are given for each sample. (2) A colon

tissue dataset fromAlon et al. (1999) which consists of 40 tumor samples and

22 normal samples. We used the same 2000 genes selected in the study. (3) A

leukemia dataset from Golub et al. (1999), which consists of 25 acute
myeloid leukemia and 47 acute lymphoblastic leukemia. The expression

levels of 7129 genes are given for each sample.

The samples identified by West et al. (2001) and Alon et al. (1999) are
used as ‘ground truth’, whereas for the leukemia dataset no ground truth is

available. Moreover, we compare the results obtained in Furey et al. (2000),
Kadota et al. (2003) and Li et al. (2001). Furey et al. (2000) used a SVM on

Algorithm 2 CL-stability

Require: L[i, j] matrix
Require: S :¼ {(xk, yk): 1' k ' n}
1: for j ¼ 1 to n do
2: nþ :¼ j fi : L½i‚ j* ¼ þ 1‚ 1 ' i ' ng j
3: n# :¼ j fi : L½i‚ j* ¼ # 1‚ 1 ' i ' ng j
4: if½ðnþ +anÞ^ð yj ¼ # 1Þ*_ ½ðn# +anÞ^ð yj ¼ þ1Þ* then
5: Sample (xj, yj) is a suspect
6: else
7: Sample ðxj‚ yjÞ is not a suspect
8: end if
9: end for

Algorithm 3 LOOE-sensitivity

Require: L[i, j] matrix
Require: S :¼ fðxk‚ykÞ : 1 ' k ' ng
1: for i :¼ 1 to n do
2: neutralP :¼ countP :¼ countN :¼ neutralN :¼ 0
3: for j :¼ 1 to n do
4: if j 6¼ i then
5: if yj ¼ L½i‚ j* ^ yj ¼ L½j‚ j* then
6: neutralP++
7: end if
8: if yj ¼ L½i‚ j* ^ yj 6¼ L½j‚ j* then
9: countP++
10: end if
11: if yj 6¼ L½i‚ j* ^ yj ¼ L½j‚ j* then
12: countN++
13: end if
14: if yj 6¼ L½i‚ j* ^ yj 6¼ L½j‚ j* then
15: neutralN++
16: end if
17: end if
18: end for
19: Output xi as a suspect if (countP-countN) + bn

20: end for

A.Malossini et al.
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the full datasets (tuning a diagonal factor to achieve the best performance on
leave-one-out cross-validation test) and on a specified top-ranked features.

Samples which have been consistently misclassified in all tests are identified

as suspects. Kadota et al. (2003) faced the problem of detecting outliers

using a technique based on Akaike’s Information Criterion. Li et al. (2001)
used a genetic algorithm in order to select subsets of genes that can poten-

tially discriminate between tumor and normal tissue samples and then each

sample is classified according to the class membership of its k nearest
neighbors.

According to Alon et al. (1999) some of the samples of the colon cancer

dataset have been identified as outliers (using a hierarchical clustering),

namely T2, T30, T33, T36, T37, N8, N12, N34. Moreover, these samples
presented an anomalous muscle-index which confirms the uncertainty

of these samples. The muscle-index is the average over the intensity of

17 ESTs in the array that were homologous to smooth muscle genes; normal

tissue should have a high muscle-index whereas cancer tissue should
have a low muscle-index [see Alon et al. (1999)]. The sample N36 has

been considered anomalous because of its low muscle index. Other

works [Furey et al., 2000; Kadota et al., 2003; Li et al. 2001] identify
some suspect samples in the colon cancer and leukemia datasets using

solely statistical methods or machine learning algorithm without any bio-

logical or clinical confirmation. For the breast cancer dataset, as stated

in West et al. (2001), the assay of ER status by immunohistochemistry is
far from perfect and can produce erroneous results. In fact five samples

of the dataset, namely the number 14, 31, 33, 45, 46, the immunohisto-

chemistry diagnosis conflicted with a successive immunoblot assay.

Samples 16, 40, 43 labeled as ER- presented instead elevated levels
of several known estrogen-regulated genes. Sample 11 instead was

uncertain.

Real benchmark datasets with biologically ground truth are not easy to

obtain. Thus, there are a lot of situations that may arise in practice that
cannot be tested. Synthetic datasets were designed to simulate these

situations. For instance, the number of dimensions, p, and the number of

distinguishing features may vary from one situation to another. Furthermore,
the two distributions may overlap to varying degrees. Using synthetic data-

sets allows us to more exhaustively evaluate how the algorithms would

behave under different conditions. Moreover, in the real datasets, we

may not truly know the ground truth. In synthetic datasets, the truths are
known. This makes examination of the algorithms more concrete. Evaluation

against these synthetic datasets complements the evaluation using real

datasets.

In Table 1 we show the name of the synthetic datasets and the corre-
sponding settings of the parameters. The flipped samples are selected ran-

domly and they may come from one or both classes. In all the experiments,

we used a SVM with a linear kernel. We chose not to perform model
selection because possibly mislabeled samples could badly influence the

construction of the LOOPC matrix. In fact the model selection procedure

could give very low weight to the slack variables of the SVM allowing

for very large errors (hence, the effect of flipping would be cancelled),
on the other side, giving too much weight to the slack variables could

excessively influence the construction of the hyperplane (hence, the effect

of the flipping would be too strong). Since we have no control over the

two possibilities we decided to set C ¼ 1 in all the simulations in order to
compare the results using the same value for C. As a comparison (on real

datasets only), we also used a local classifier, a nearest neighbor classifier,

with k ¼ 3, in which the classification is based on majority voting. We
decided to use the k-NN classifier because, based on the article Dudoit et al.
(2002), it performs well with respect to others simpler linear classifier

in microarray classification tasks. For the implementation of the Furey’s

algorithm we decided to follow the indication in Furey et al. (2000) and run
the algorithm on the full datasets and on a reduced dataset of 3500 features

(note that the choice of the number of features to select is arbitrary) with

different values for the diagonal factor 0‚0:1‚0:5‚1‚1:5. Finally, in the

LOOE-sensitivity algorithm bn is set to 1.

All the algorithms have been implemented using the language for

statistical computing R (http://www.R-project.org).

3 RESULTS AND DISCUSSION

3.1 Synthetic datasets

We first used the synthetic datasets described above to evaluate the
CL-stability and LOOE-sensitivity algorithms. Table 2 shows pre-
cision, recall and number of identified suspects of the CL-stability
and LOOE-sensitivity algorithms, averaged across 100 trials. In
each trial we randomly flip 0% (for the first row) and 10% of
the samples. For example, for the second row of the table, we
generated 100 different instances of Synthetic2000; the mean values
are obtained by averaging across the 100 instances. In each trial, we
recorded the number of suspect samples identified, the precision and
the recall. It is possible to compute precision and recall values
because we know precisely which and how many samples were
mislabeled (the fourth column gives this number). The first row
of Table 2 is for dataset instances with 2000 features, 20 of which
were distinguishing, but none of the samples had been flipped. The
CL-stability algorithm identified 1.2 suspect samples on average.
The next four rows are for dataset instances all with 20 distinguish-
ing features and 3 out of 30 samples flipped. The only difference
among the four rows is the variation in p, the number of features,
from 2000 to 100. As p decreases and the number of distinguishing
features remain fixed at 20, the two classes become less similar
relatively speaking, making the identification of mislabeling
easier. This is reflected in the improvement of both the precision
and recall values produced by the CL-stability algorithm.
The next three rows of Table 2 are for dataset instances all with

2000 features and 3 flipped samples. The only difference is the
variation in the number of distinguishing features, which changes
from 100 to 5. (The row corresponding to the case with 20 distin-
guishing features is duplicated from a previous row for easier
comparison.) As expected, both the precision and recall values
of the CL-stability algorithm decrease as the number of distinguish-
ing features is reduced.
Finally, the last two rows of the first part of Table 2 represent

dataset instances all with 2000 features, 20 distinguishing features

Table 1. Synthetic dataset used

Dataset p f± m+ s+ m s

Synthetic2000 2000 20 3 1 #3 3

Synthetic1000 1000 20 3 1 #3 3

Synthetic200 200 20 3 1 #3 3

Synthetic100 100 20 3 1 #3 3

Synthetic2000sep 2000 20 30 1 #30 3

Synthetic2000ovr 2000 20 3 1 0 3

For a two-class classification problem, a synthetic datasetwas generatedby sampling, for

each feature, from a uni-variate gaussian distributionwith the samemeanm and standard

deviations. The twoclasses differedonly for a limitednumberof features f±drawn froma

gaussian distributionwith a differentmeanm± and a narrower standard deviations+. The

numberof sampleswas fixed ton¼30and the datasets generatedwere balanced.The first

four combinations are identical except that the dimensionality p varies from 2000 to 100.

The last two combinations capture the situations when the two classes are either strongly

separated or overlapped.
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and 3 flipped samples. The only difference is how widely separated
the two classes were, as described earlier. As expected, both the
precision and recall values of the CL-stability algorithm improve as
the separation becomes wider.
In general, for the CL-stability algorithm, the recall value is

higher than the corresponding precision value. We believe that
from a mislabeling identification point of view, it would be better
this way than if the recall value is lower. We view the identification
exercise as a way to cleanse the data. For example, the list of
suspects may be given to an expert to perform additional assessment
of the samples. Thus, for many applications, it is better to err on the
conservative side in having false positives than having false
negatives.
Next let us turn to the LOOE-sensitivity algorithm. The figures

reported in Table 2 for the algorithm are for the situation when
the positive evidence strictly outweighs the negative evidence (i.e.
bn ¼ 1). In general, if we raise the threshold bn, precision would
improve but at the expense of recall. Conversely, if we lower bn, the
reverse relationship applies.
It is obvious that in almost every situation, the CL-stability

algorithm dominates the LOOE-sensitivity algorithm, particularly
with respect to recall values. The idea of the CL-stability algorithm
is to measure how the labeling of the current sample is affected by
the labeling of other samples. In contrast, the LOOE-sensitivity
algorithm measures how the labeling of the current sample affects
the labeling of other samples. From the results shown thus far, it is
apparent that the former strategy is far more effective in identifying
mislabeled samples. In the following, we present results on the real
datasets. Again, the LOOE-sensitivity algorithm gives results
dominated by the CL-stability algorithm. Thus, we only show
the results of the CL-stability algorithm below.

3.2 Real datasets

The second part of Table 2 shows the performance of CL-stability
and LOOE-sensitivity algorithms on the cleansed datasets (we

remove the samples which have been identified as suspects in at
least one work in the literature). For all the three real datasets, the
performance of the CL-stability dominates those of the LOOE-
sensitivity, thus strengthening the choice of using the CL-stability
for further analysis.
In Table 3 we report, for three real datasets, the samples identified

as suspects using different algorithms. For each dataset a different
‘ground truth’ is used: Alon et al. for the colon cancer, West et al.
(2001) for the breast cancer and for the leukemia dataset we used the
samples identified by the majority of other works (because no bio-
logical validation is available). Since the CL-stability algorithm is
not restricted to a particular classification strategy we evaluated its
performance using as core algorithm a SVM and a 3-nearest neigh-
bor. As further comparisons, we used a simple LOO detecting
procedure (the misclassified samples are suspects), and for the
breast cancer dataset we applied the algorithm used in Furey
et al. (2000). Note that even among human analysts, there may
not be universal consensus as to which samples are mislabeled
or not. For the colon cancer, the CL-stability algorithm using
SVM correctly identifies six out of nine suspects, producing only
two false positives. The simple LOO identifies also the sample N12
but at the cost of four false positives. Furey instead identifies six
samples with no false positives. For the breast cancer the situation is
similar but here the CL-stability using SVM correctly identifies
five out of nine samples with no false positives, whereas the
other algorithms produce one or two false positives. For the leuke-
mia dataset all the algorithms agree on identifying the sample 66
as suspects but Furey generates another suspect and the CL-stability
algorithm using 3-NN generates five more suspects. In general,
the CL-stability algorithm using the SVM gives satisfactory
results. For all three datasets, the suspect list appears to be of
high quality, rivaling the suspect list generated by human experts
using more accurate biological techniques (e.g. immunoblotting).
The version of the CL-stability algorithm using 3-NN does
not perform as well. From Table 3 results that the CL-stability

Table 2. Mean precision, recall and number of suspects (100 random trials) when using the CL-stability algorithm and the LOOE-sensitivity algorithm, some

samples are artificially flipped

Dataset n Number of
distinguishing

features

Number of
mislabeled

samples

Cl-stability LOOE-sensitivity
Prec Rec Number of

suspects

Prec Rec Number of

suspects

Synthetic2000 30 20 0 — — 1.2 — — 2.2

Synthetic2000 30 20 3 0.37 0.56 5.4 0.20 0.60 10.2

Synthetic1000 30 20 3 0.60 0.74 4.1 0.25 0.59 7.4

Synthetic200 30 20 3 0.89 0.95 3.3 0.31 0.55 5.5

Synthetic100 30 20 3 0.88 0.93 3.4 0.30 0.57 6.1

Synthetic2000 30 100 3 1.00 0.99 3.0 0.04 0.15 2.0

Synthetic2000 30 20 3 0.37 0.56 5.4 0.20 0.60 10.2

Synthetic2000 30 5 3 0.11 0.32 9.1 0.11 0.43 12.9

Synthetic2000sep 30 20 3 0.58 0.70 4.4 0.27 0.63 9.8

Synthetic2000ovr 30 20 3 0.17 0.37 7.9 0.14 0.47 11.2

Breast cancer† 40 n.d. 4 0.78 (0.16) 0.92 (0.12) 5.0 0.28 (0.23) 0.47 (0.33) 7.7

Colon cancer† 51 n.d. 5 0.62 (0.14) 0.91 (0.14) 7.7 0.30 (0.25) 0.51 (0.32) 10.2

Leukemia† 70 n.d. 7 0.60 (0.10) 0.91 (0.12) 10.8 0.24 (0.16) 0.50 (0.26) 18.5

The first part of the table describes the performance of the two proposed algorithms on different synthetic datasets. The second part regards real datasets that have been cleansed (we

removed all the samples identified as mislabeled or suspects in at least one study in the literature, see Section 3.2). The symbol †denotes a cleansed real dataset. In parenthesis we report

the standard deviation.
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algorithm and the Furey’s algorithms are comparable in terms
of detection power of suspects. However it has to be noticed
that the latter algorithm implies an arbitrary choice for the number
of features to be selected and for the range of the diagonal
factor. Moreover it has been shown in Malossini et al. (2005)
that mislabeled samples can considerably affect the resulting
list of selected genes, hence the results obtained using those
lists. On the contrary, our CL-stability algorithm use the dataset
‘as it is’ and the parameter an is automatically chosen.
Table 4 shows the number of suspects identified using both

the SVM and the 3-NN versions on the cleansed datasets. Again,
the version using SVM performs very satisfactorily—with only one
false positive for the breast cancer dataset, and with no identified
suspect for the other two datasets. In contrast, the version using
3-NN does not perform as well, particularly with six false positives
for the leukemia dataset.
One way to differentiate between the SVM version and the 3-NN

version is that the former can be viewed as ‘global’, whereas the
latter can be viewed as ‘local’. In the local case, a single flip may
have significant influence within the neighbourhood. Thus, it may
tend to be overly aggressive, leading to poor precision. In contrast,
a more global strategy, such as SVM, uses information contained in
all the samples. As such, it may be more conservative in identifying
suspects. Since we generally expect that mislabeled samples are
rare events, the more conservative approach appears to be more
effective. From now on, we only show the results using the SVM
version of the CL-stability algorithm.
Finally, it might be interesting to plot the receiver operating

characteristics (ROC) curves of the CL-stability as a function of
the an parameter, see Figure 1, using as ground truth the elements
identified by Alone et al. (1999) and West et al. (2001). The filled
circles denote the value of an chosen using the argumentation
explained in Section 2.2.

3.3 An automatic correction heuristic

So far, our evaluation focuses on identification of suspect
samples. An immediate question to ask is what we expect the
user to do with the suspect list. We intend the CL-stability algorithm

Table 3. Lists of suspects obtained on the original real datasets

Dataset Source Suspects identified w.r.t. the gold standard Extra samples

identified

Colon cancer Alon et al. (1999) T2 T30 T33 T36 T37 N8 N12 N34 N36
CL-stability (SVM) ! ! ! ! ! ! N2, N28

CL-stability (3-NN) ! ! ! ! ! N2, N7, N27, N39

Simple LOO ! ! ! ! ! ! ! T8, N2, N28, N29

Furey et al. (2000) ! ! ! ! ! !
Kadota et al. (2003) ! ! ! ! ! T6, N2

Li et al. (2001) ! ! ! ! !
Breast cancer West et al. (2001) 11 14 16 31 33 40 43 45 46

CL-stability (SVM) ! ! ! ! !
CL-stability (3-NN) ! ! ! ! 19, 36

Simple LOO ! ! ! ! ! 19, 47

Furey Algorithm ! ! ! ! ! 47
Leukemia Majority 66

CL-stability (SVM) !
CL-stability (3-NN) ! 2,29,35,47,64

Simple LOO !
Furey et al. (2000) ! 54

Li et al. (2001) !

The first line for each dataset represents the gold standard; whereas for the colon and breast cancer there is a biological validation of the suspect highlighted, for the leukemia dataset

such validation does not exist (hence the gold standard is given by the samples highlighted by the majority of the algorithm considered).

Table 4. Number of suspects generated in the analysis of cleansed datasets

using the CL-stability algorithm

Cleansed dataset Number of suspects
SVM 3-NN

Breast cancer (40) 1 2

Colon cancer (51) 0 1

Leukemia (70) 0 6
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Fig. 1. ROC curves for the CL-stability algorithm. For the colon cancer the

list provided by Alone et al. (1999) is used as ground truth; for the breast

cancer the list provided by West et al. (2001) is used as ground truth. The
parameter an is varying from n + 1 to 0 in step of 1; the filled circle represents
the threshold chosen using the given formula for an
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to serve as an ‘alert’ filter for notifying the user about the quality of
the samples. Thus, the expected course of action is for the user to
investigate further the suspects. However, for some applications,
such human intervention may not be available. In that case, we
propose a simple correction heuristic–that we reverse the label of
each sample in the suspect list. In the following, we evaluate the
effectiveness of this heuristic.
To compare between the different classifiers obtained, we used

two metrics. The first one is the classification error of the classifier
with respect to the original labels and it is defined as

CE ¼ j fi : CðxiÞ 6¼ yi‚ 1 ' i ' ng j
n

‚

where CðxiÞ gives the label of applying classifier C (trained on the
corresponding dataset) to the sample xi. The second metric is
independent of labels where we compute the angles BH between
the hyperplane of the original classifier and the hyperplanes
obtained for the other classifiers. Table 5 compares four classifiers:
the SVM classifier based on the original dataset, the SVM classifier
based on the cleansed dataset (remove all the samples identified as
suspect in the literature), the SVM classifier based on the corrected
dataset using the literature (flip back all the samples identified as
suspect in the literature) and the SVM classifier based on the
corrected dataset where, as suggested in the proposed heuristic,
the label of a sample in the suspect list is flipped. There are
three columns in the table, giving the LOO accuracy (average across
all the samples), the disagreement figure CE and the BH angle.
Considering the disagreement figures and the angles, it is clear
that the corrected classifiers are different from the corresponding
original classifiers for all three datasets. More importantly, the
accuracy of the corrected classifiers is better than the original clas-
sifiers for the colon cancer and the breast cancer datasets. (The
leukemia dataset does not discriminate among the three classifiers.)
Note that the accuracies presented are computed on the same dataset
used for the identification of the suspects, hence all the accuracies
may contain a small bias. Therefore those accuracies should not be
regarded as an unbiased estimate of the generalization error. In the
absence of human intervention, the corrected classifiers often
behave almost as well as the classifiers based on the cleansed data-
sets. This shows that the quality of the suspect lists is high, and the
automatic correction heuristic is reasonable. Furthermore, for situ-
ations where the sample size is already small, the correction heuris-
tic may help to preserve as many samples as possible, thereby
preserving the statistical power of the analysis.
To evaluate the impact of the correction heuristic, we use

feature selection as a way to compare between the original dataset

and the corrected dataset. Feature selection is a meaningful task
because for many medical applications, the researchers are inter-
ested in the actual genes that discriminate between the two classes,
not simply to predict the class label. We use the recursive feature
elimination using SVM (Vapnik et al., 2002) and for each iteration
we eliminate 10% of the genes. Figure 2 shows the comparison of
the selected features for the colon and the breast datasets. The x-axis
gives the top-k genes/features selected, where k varies from 20 to
200. The y-axis gives the number of selected features in common
(i.e. the size of the intersection of the top-k lists). The plots A and C
show the size of the intersection between the original dataset and
the literature-corrected dataset and the intersection between the
corrected dataset and the literature-corrected dataset. Similarly,
the plots B and D show the two curves with respect to the cleansed
dataset. It is clear that list produced when we flip back or remove the
suspects can be very different from the list obtained using the
original datasets. Moreover, flipping back has a stronger effect
on the resulting list than removing them, with respect to the list
obtained using the original dataset. This observation is confirmed
for the breast dataset. In fact, the gap between the corrected dataset
and the original dataset is even wider for the breast data.

Table 5. Accuracy and comparison between the original classifier and the different classifiers obtained when using the three methods for handling suspect

samples

Methods Colon cancer Breast cancer Leukemia
Accuracy CE BH Accuracy CE BH Accuracy CE BH

Original dataset (orig) 0.81 0.00 0 0.86 0.00 0 0.99 0.00 0

Cleansed dataset using the literature (cleansed) 1.00 0.10 57 0.98 0.08 40 0.99 0.01 19

Corrected dataset using literature (lit-corr) 0.90 0.18 80 0.86 0.18 73 0.93 0.03 31

Corrected dataset using the heuristic (heur-corr) 0.89 0.19 72 0.96 0.10 61 0.99 0.01 27

LOO accuracy of the classifier obtained.
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Fig. 2. Common genes when using the RFE on the different datasets listed
in Table 5.
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4 CONCLUSION

In this paper, we propose two algorithms for detecting possibly
mislabeled samples. The CL-stability algorithm is based on mea-
suring the stability of the label of a sample with respect to label
changes of other samples. The version of the CL-stability algorithm
based on SVM appears to be quite accurate for three real datasets.
The LOOE-sensitivity algorithmwhich relies on assessing the effect
of a single perturbation on the LOO error does not performwell. The
good performance achieved in the CL-stability may be owing to
the fact that in this algorithm different perturbations are analyzed
for a single sample, whereas in the LOOE-sensitivity the effect of
only a single perturbation is analyzed. The suspect list produced by
the SVM version is of high quality. Furthermore, when human
intervention is not available, the correction heuristic appears to
be beneficial. In future work, we believe that the correction heuristic
can be improved further. A more sophisticated heuristic could
selectively flip the labels of some, but not all, of the samples in
the suspect list.
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