Object Recognition & Categorization

Rhian Davies

CS532

Information Visualization: Perception For Design (Ware, 2000) pp 241-256 Vision Science (Palmer, 1999) - pp 416-436, 561-563

Object Perception and Object Categorization

- 2 theories of object recognition
- object display and object based diagrams
- categorization (Aristotle to Rosch)
- effects
- visual agnosia
- theories of object categorization
- object file

Two Theories of Object Recognition

image-based
'snapshot'
primitive 3-D parts
recognize previously seen images
priming effect
rapid recognition of two distinct images as being similar

Applications for Images in User Interfaces

• Icons

- trigger activation of related concepts
- pictorially represented
- Searching
 - priming (searching patterns in database)
 - rapid burst of images
- Personal Image Memory Bank ???

Geon Theory(Biederman)

- cross-sectional curvature
 - straight or curved
- symmetry
 - asymmetrical, reflectional, reflectional and rotational
- axis curvature
 - straight or curved
- size variation
 - constant, expanding & contrasting, expanding

Applications for Both Theories in User Interfaces

- evidence for both
- visual images and 3D-structures are both stored (?)
- images are good -- but use good 2D layout to take advantage of structural representations

Chernoff Faces

(Chernoff, 1973)

- data variables matched to different facial features
- perceptual space of Chernoff faces probably extremely non-linear
 - more sensitive to changes around eyes than nose

Chernoff Features					
Face width	Ear level	Half face height	Eccentricity of upper ellipse of face		
Curvature of mouth	Seperation of eyes	Length of nose	Eccentricity of lower ellipse of face		
Length of mouth	Slant of eyes	Half length of eye	Position of centre of mouth		
Position of pupil	Height of eyebrow	Angle of brow	Eccentricity of eyes		
Length of brow	Radius of ear	Nose width	Height of centre of eyes		
http://www.opco.ed.co.uk/computing/training/document_erchive/CoiVic					

http://www.epcc.ed.ac.uk/computing/training/document_archive/SciViscourse/SciVis.book_47.html

Language Games

- Wittgenstein(1953)
- language does not have a one-to-one mapping to the world
- words have meaning in context
- different contexts, or games, result in words having different meanings
- the similarity is one of resemblance

Rosch: Prototype Theory

- natural categories
 - instance based representation (prototype)
 - graded membership
- typicality ratings
- basic (subordinate, super-ordinate) levels - similar shape, motor interaction, attributes
- entry-level categories (Jolicoeur, Gluck & Kosslyn, 1984)

Rosh style test:	
FEKIG	
FUTEG	
PURYG	
FYRIP	
KURIT	

	EEVIC	
	FEKIG	
	FUIEG	
	PURYG	
	FYRIP	
	KURIT	
Prototype:	FURIG	

Alternative Hypothesis -Whittlesea

- typicality effects in category learning result from encoding and preserving representations of individual training instances
- confound: FUKIP responded to quickly because of closeness to prototype, or closeness to all individual test items?

http://howard.psych.nwu.edu/psych/people/faculty/paller/cogsci/whittlesea.html

- 2nd order fact
 - perspective effects speed and accuracy

http://psyserver.pc.rhbnc.ac.uk/zanker/teach/PS202/PS202_L2.html

Perspective Viewing

- priming effects
 - picture presented second time recognized faster
- when does it work?
 - changes OK:
 - Position in visual field, retinal size, mirror image reflection, perspective (with exceptions)
 - changes not OK:
 - perspective changes in such a way that different parts are visible

Part Structure

- Biederman & Cooper, 1991
- prior presentation prime classification?
 3 conditions:
- identity priming (same)
- line compliment priming ($\bigcirc -> \bigcirc^{\circ}$)
- different exemplar priming (baby-grand -> standup)
- identity and line almost the same priming
- perception of parts plays crucial role

Visual Agnosia

- unable to correctly categorize common objects
- lack of
 - sensory deficit
 - conceptual deficit
 - deficit in other sensory modality
 - linguistic deficit

Theories of Object Categorization

- Recognition By Components (RBC) theory
 Biederman (geon theory)
- Piaget interactionist account
- Edelman TNGS (theory of neuronal group selection)
- Whittlesea: SCAPE (Selective Construction And Preservation of Experiences) account

Conclusion

- object recognition
 - image based & structural based theories
- categorization
 - rule-based & prototype theories