CPSC 532E — Week 5: Lecture

Edge Detectors; Texture Perception

- Edge Detectors - Gabor filters
- Texture Segmentation
- Texture Coding

Texture vs. Colour

Colour is a surface property
- used a a **means** -> formation of groups
 -> formation of boundaries
- used as an **ends** -> coding of categories

Texture is the spatial analog of colour...

Texture is a surface property
- used a a **means** -> formation of groups
 -> formation of boundaries
- used as an **ends** -> coding of categories
Texture perception

Some texture differences give rise to boundaries:

- Different colours

- Different orientations

-> Texture boundary
Others don’t…

Need a framework to handle these kinds of textures as well as more “natural” kinds
Edge Detection

Just as colour is based on the input of cones at early stages of vision (eye), so is texture based on the input of edge detectors at early stages of vision (eye + first cortical area).

Simplest case:
Circularly symmetric detector (difference of Gaussians)

\[\text{DoG}(x) = G_1(x) - G_2(x) \]

Detects edges of a particular width

\[\text{DoG}(x) = 0 \]

\[\text{DoG}(x) \gg 0 \]
Edge detectors usually have the form of a Gabor function \(G(x) = \cos(x) \exp(-kx^2) \)

\[
\begin{align*}
G_1(x) &= \exp(-kx^2) \\
G_2(x) &= \cos(x)
\end{align*}
\]

\(k \) - determines the width best responded to

In two dimensions, Gabor functions have both width and orientation

Provide a complete analysis of the geometric information at each location in the visual field

-> the basis of shape perception (features)
Spatial Frequency Channels

Since Gabor functions respond only to particular widths and orientations (cf. color photopigments), they form the basis of a categorization of geometric structure (cf. color categories)

-> spatial frequency channels
 - spatial frequencies within factor of 3 are in same channel
 - orientations within 30 degrees are in same channel

- spatial frequencies within factor of 3
- orientations within 30 degrees

With this kind of resolution (in space and orientation), how is it possible to get information about details of geometric structure?
Answer: **Differences** in signals

E.g.

\[F_1(\theta) - F_2(\theta) \]

A small difference in orientation leads to a large difference in signal.

Same idea for spatial frequency, colour, etc., ...

Texture

Textures are based on outputs of Gabor functions at early levels...

Since texture perception is based on Gabor functions, key properties of a texture include:

1. Lightness (true of all spatial patterns)
2. Contrast (true of all spatial patterns)
3. Dominant Width (spatial frequency content)

Note:

Dominant width cannot distinguish between
- small texture elements with large spaces between them, and
- large texture elements with small spaces between them

average lightness varies, though
Since texture perception is based on Gabor functions, key properties of a texture include:

1. Lightness (true of all spatial patterns)
2. Contrast (true of all spatial patterns)
3. Dominant Width (spatial frequency content)
4. Dominant Orientation
5. Distribution of Colours
6. Etc. (e.g. measure of randomness)

Texture Segmentation

The most important aspects of texture are sometimes the **boundaries** between different regions
(cf. colours - act as a medium)
First set of Gabor functions act like photoreceptors - each type provides a “map” of activity

e.g. Horizontal filters respond only to horizontal items

Edge of activity defines a border for given texture

To get sharp border, need strong segmentation
-> activate different sets of Gabor functions

This requires activation of different spatial frequency channels:
- difference in frequency of factor ≥ 3
- difference in orientation of ≥ 30 deg

(This is for immediate pickup of texture differences)
Texture differences can be resolved that are smaller than this.
- difference in frequency of factor ≈ 0.1
- difference in orientation of ≈ 5 deg

This is based on the combination of signals from different spatial frequency channels
-> This requires more time

Using texture this way is similar to using colour.
If contrast and luminance are controlled, there are limits on how texture can be used:

- Borders have low spatial resolution
 - only useful for relatively large areas
- Borders poor for perception of motion
 - (factor of 10 worse)
- Areas cannot support perception of depth
Colours and textures that have same luminance (and contrast) as surrounding areas cannot provide luminance system with information

This also includes patterns defined by
- motion
- binocular stereopsis

These are collectively called **second-order properties**
Note: Second-order properties have a range of similar behaviours.

E.g., simultaneous brightness contrast

simultaneous colour contrast

simultaneous texture contrast

Texture Coding

Just as colours can be used as visual labels (e.g. to represent distinct categories), so can textures.

Textures can be used independently of colours, and so can effectively expand dimensionality of the label space.

-> Possibly have interactions with colour [i.e., coloured textures], but this hasn’t been explored yet.
Distinct texture categories involve activation of different sets of Gabor functions

1. If categories must be immediately obvious, this requires activation of different spatial frequency channels:
 - difference in frequency of factor ≥ 3
 - difference in orientation of ≥ 30 deg

 (cf distinct set of colour labels)

2. If categories only need to be obvious when scrutinized, this requires resolution of activity in the spatial frequency channels:
 - difference in frequency of factor ≈ 0.1
 - difference in orientation of ≈ 5 deg