

Interpreting a t-test

The t-test gives the probability that the difference in the means could have arisen by chance.

By convention, p < .05 is taken as significant (ie. the null hypothesis is disproven)

Is this the best way to test these designs?

What if the difference were due to the <u>observers</u>?

One solution: Use several different observers, use the average of all of them (Between-subject design)

This does work, but requires a lot of observers. - typically, at least a dozen

Better solution:	Use the san them <u>each</u> c (Within-sub	ne observers, lo the <u>same co</u> ject design)	but have onditions
Observer	<u>Big dot</u>	<u>Multi dot</u>	Diff
Α	1.1	1.4	0.3
В	3.1	3.4	0.3
Avera Within-s since it differen	age difference ubject design can cope wit nces between	e = 0.3 second is very sensit h systematic observers	ls ive,

When testing for d measuremen rather than	ifferences, s nt is one of <u>f</u> quantity	sometimes the frequency
n this case, the a	ppropriate t	est is a χ ²-test
a compose two	monitoring	systems in
terms of fail	ure rates:	Systems in
terms of fail	ure rates: <u>Failures</u>	Successes
.g., compare two terms of fail System A	ure rates: <u>Failures</u> 4	<u>Successes</u> 43

Hypothesi	s:		
There	is no differen	ce (null hyp	othesis)
ine null n	iypotnesis: I	ne distributi	ion is
dete	ermined by a	single proba	ability
of fa	ailing; distrib	ution differe	nces
are	due only to d	lifferent nun	nbers
dete	ermined by a	single proba	ability
of fa	ailing; distrib	ution differe	nces
are	due only to d	lifferent nun	nbers
Observed	Observed	Predicted	Predicted
<u>Failures</u>	<u>Successes</u>	<u>Failures</u>	<u>Successes</u>
dete	ermined by a	single proba	ability
of fa	ailing; distribu	ution differe	nces
are	due only to d	lifferent nun	nbers
Observed	Observed	Predicted	Predicted
<u>Failures</u>	<u>Successes</u>	<u>Failures</u>	<u>Successes</u>
4	43	4.9	42.1

Hypothesis:

There is no difference (null hypothesis)

²-test: p > .85

The null hypothesis is **not disproven**

(Note: There could be a difference. However, this test may not have been sensitive enough to pick it up.)

Determining d' (and) as a function of some parameter (eg. brightness difference) describes the <u>characteristics</u> of the effect