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Abstract. We propose a generalization of the conjugate gradient methodthat uses multiple preconditioners,
combining them automatically in an optimal way. The derivationis described in detail, and analytical observations
are made. A short recurrence relation does not hold in generalfor this new method, but in at least one case such a
relation is satisfied: for two symmetric positive definite preconditioners whose sum is the coefficient matrix of the
linear system. A truncated version of the method works effectively for other cases as well. The algorithm may be
useful for domain decomposition techniques and other problemsin which the need for more than one preconditioner
arises naturally. We discuss similarities and differences with the standard and block conjugate gradient methods.
Numerical examples illustrate and validate the merits of our algorithm.
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1. Introduction. The conjugate gradient (CG) method is celebrating its 53rd anniver-
sary this year. In the years since its conception in 1952 [9],it has established itself as the
method of choice for iteratively solving large sparse symmetric positive definite (SPD) lin-
ear systems,Ax = b. Throughout the years it has seen many variants and generalizations,
blossoming into a large family of Krylov subspace solvers.

This paper is concerned with a variation of the standard preconditioned conjugate gradi-
ent (PCG) method that employs multiple preconditioners. Wecall the algorithm MPCG:
multi-preconditioned conjugate gradient. The motivationis that for preconditioning cer-
tain problems there are several alternative approaches with different desirable properties,
but it may be difficult to combine them into a single effectivepreconditioner. A multi-
preconditioned solver could automatically take advantageof all available preconditioners.

As with flexible CG [10], and as discussed in section 3, our approach cannot generally
maintain one of the most attractive features of standard PCG: the famous three-term recur-
rence relation. However, in practice a truncated version ofthe method works efficiently in
many cases we have tested. Moreover, we are able to show analytically that for the case of
two preconditioners whose sum is equal to the coefficient matrix, a short recurrence relation
does hold.

1.1. Relevant previous work and contribution of this paper. Block versions of CG
have been proposed in the literature, but none of them considers using multiple precondition-
ers. O’Leary [11] derived a block conjugate gradient methoddesigned to handle multiple
right hand sides, which is also capable of accelerating the convergence of linear systems with
a single right hand side. The method uses a single preconditioner and can be classified as
a block Krylov method. Brezinski [3] proposes an effective new adaptation of block CG
for solving with a single right hand side, partitioning the initial residual into multiple search
directions (see also Bantegnies and Brezinski [1] for more discussion).

Gu et. al. propose in [7, 8] an approach based on multiple search directions similar to
the block CG approach (again with a single preconditioner),but with the conjugacy property
weakened by zeroing out components of the search directionsin other subdomains, elim-
inating global communication bottlenecks in a parallel environment at the price of slower
convergence.
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Related work that should also be mentioned is the family of flexible or inexact methods
[5, 10, 12, 14]. Our approach is different since in those methods the preconditioner changes
throughout the iteration, whereas in the method that we propose, MPCG, the preconditioners
are fixed and are determined a priori. (At the same time, we note that a flexible variant of
MPCG can be applied in a straightforward fashion.) As a result, the iteration subspace and
the optimality results are different.

Our new iterative method incorporates multiple preconditioners and obtains an energy
norm minimization property, while maintainingA-conjugation and orthogonality properties
similar to PCG, but with iterates constructed in ageneralizedKrylov space incorporating an
arbitrary set of preconditioners. We believe that the technique opens new opportunities for
fast and robust solution techniques.

1.2. Organization of paper and notation. The paper is structured as follows. In Sec-
tion 2 we derive a multi-preconditioned steepest descent method. In Section 3, the main part
of the paper, we derive the MPCG algorithm and discuss its properties. Section 4 is devoted
to numerical experiments. Finally, in Section 5 we draw someconclusions and point out
possible directions for future research.

Throughout we will assume without loss of generality that our initial guess isx0 = 0,
with accompanying initial residualr0 = b; generally quantities computed at thei’th iteration
of an algorithm will have the subscripti. The matrixA is symmetric positive definite, and
the preconditioners areMj , j = 1, . . . k, whereM−1

j ≈ A−1. This is the one case where the
subscript does not indicate the iteration at which the quantity is computed:M1, . . . Mk are
fixed throughout the algorithm.

2. Multi-preconditioned steepest descent (MPSD). SinceA is symmetric positive
definite, it is possible to employ the notion of energy norm:‖e‖A =

√
eT Ae. The basic

Steepest Descent (SD) algorithm for solvingAx = b is to take the negative gradient of the
energy norm of the error, i.e. the steepest descent direction, which also happens to be the
current residual vectorri, as the search direction for a step that minimizes the energynorm
of the error associated with the new guess:

pi+1 = ri

αi+1 = (pT
i+1Api+1)

−1(pT
i+1ri)

xi+1 = xi + αi+1pi+1

ri+1 = ri − αi+1Api+1

Of course, convergence is much faster if the search direction is closer to the actual error
A−1ri, so it is natural to precondition this iteration by instead choosingpi+1 = M−1ri

whereM−1 ≈ A−1, obtaining apreconditionedSD algorithm (PSD).
One possible approach of further improving the new residualis to enlarge the search

space from one dimension to multiple dimensions: use a set ofsearch directionsp1, . . . , pk.
In particular, if multiple preconditionersM1, . . . ,Mk are available, usepj

i+1
= M−1

j ri+1.
Let Pi = [p1

i | . . . |pk
i ]. To get the same energy norm minimization, we derive a multi-

preconditioned steepest descent (MPSD) algorithm:

p
j
i+1

= M−1

j ri for j = 1, . . . , k

αi+1 = (PT
i+1APi+1)

−1(PT
i+1ri)

xi+1 = xi + Pi+1αi+1

ri+1 = ri − APi+1αi+1
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Note thatα is now avectorof coefficients specifying the linear combination of searchdirec-
tions for updating the guess.

3. Multi-preconditioned conjugate gradient (MPCG). Although the steepest descent
method converges, it is inefficient compared with ConjugateGradient. This section estab-
lishes the multi-preconditioned analogy of CG in a fashion similar to the derivation of the
standard PCG, whose first step is an iteration of PSD. The analogy to the derivation of the
standard method with a single preconditioner allows for making the reasonable assumption
that MPCG will improve on MPSD in a way similar to the improvement obtained by using
CG rather than SD.

3.1. Derivation. One way of looking at CG and why it is so much faster than SD is
to interpret it as a generalized SD with multiple search directions. At stepi + 1, the search
directions are simplyp1, . . . , pi+1, i.e. the new search direction plus all the previous ones.
Thus we get a global energy norm minimum, not just a local greedy minimization. The
clever part about CG is choosing the search directions to beA-conjugate, so thatPT

i+1APi+1

is just diagonal and trivial to invert. Furthermore, due to the global minimization, the previous
search directionsPi are orthogonal to the most recent residual, soPT

i+1ri is zero except for
the last component, making the update even simpler.

We will want to preserve these features in generalizing PCG to have multiple search
directions per step (generated from multiple preconditioners). That is, we want the property

PT
i APj = 0 for i 6= j.

We begin with one step of MPSD:

p
j
1 = M−1

j r0 for j = 1, . . . , k

α1 = (PT
1 AP1)

−1(PT
1 r0)

x1 = x0 + P1α1

r1 = r0 − AP1α1

Then we generate the preconditioned residuals to increase the dimension of the search space:

z
j
2 = M−1

j r1 for j = 1, . . . , k.

Let Zi = [z1
i | . . . |zk

i ]. We will want to getP2 from Z2 by making itA-conjugate to the
previous directions:

P2 = Z2 − P1(P
T
1 AP1)

−1PT
1 AZ2 ,

or more generally:

Pi+1 = Zi+1 −
i
∑

j=1

Pj(P
T
j APj)

−1PT
j AZi+1 .

Now, with the newA-conjugate search direction, we can again seek a global minimum that
simplifies to a local computation:

αi+1 = (PT
i+1APi+1)

−1(PT
i+1ri)

xi+1 = xi + Pi+1αi+1

ri+1 = ri − APi+1αi+1

The algorithm is given in Figure 3.2.
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p
j
1 = z

j
1 = M−1

j r0 for j = 1, . . . , k

P1 = [p1
1|p2

1| . . . |pk
1 ]

α1 = (PT
1 AP1)

−1(PT
1 r0)

x1 = x0 + P1α1

r1 = r0 − AP1α1

Repeati = 1, 2, . . . until convergence
Zi+1 = [M−1

1 ri|M−1

2 ri| . . . |M−1

k ri]

Pi+1 = Zi+1 −
∑i

j=1
Pj(P

T
j APj)

−1PT
j AZi+1

αi+1 = (PT
i+1APi+1)

−1(PT
i+1ri)

xi+1 = xi + Pi+1αi+1

ri+1 = ri − APi+1αi+1

end

FIG. 3.1.The MPCG algorithm.

3.2. Orthogonality properties. Since we do a global minimization of energy norm at
the previous steps, we get the usual orthogonality property:

PT
i rj = 0 for i ≤ j.(3.1)

Note also that

rT
j Zi = rT

j

(

Pi + Pi−1(P
T
i−1APi−1)

−1PT
i−1AZi

)

(3.2)

= rT
j Pi + rT

j Pi−1 (. . .)

= 0 + 0 for i ≤ j.

Up to this point we have derived properties which are valid for any choice of theZ ’s,
e.g. even with random nonsymmetric preconditioners chosenindependently at each step.
However, let us now use the fact that our preconditioners aresymmetric and do not change
throughout the iteration (as opposed to a flexible method). Then

rT
j zs

i = rT
j M−1

s ri−1 = rT
j (M−1

s )T ri−1 = (M−1
s rj)

T ri−1 = (zs
j+1)

T ri−1

In combination with (3.2), we conclude that

rT
j Zi = 0 for j 6= i − 1.(3.3)

3.3. Breakdown. The MPCG algorithm could break down ifPT
j APj is singular for

any j, which happens for example if two or more of the preconditioners are identical to
each other. Note thatPT

j APj is k-by-k, wherek is the number of preconditioners. It is
therefore an extremely small matrix whose singularity can be easily detected. A possibility
of breakdown should not be a major concern: sensible choice of the preconditioners should
preclude such a situation, since it does not make sense to choose preconditioners that do
not produce linearly independent A-conjugate directions.However, in any case an automatic
way to avoid a breakdown situation may be to apply the pseudo-inverse ofPT

j APj , which
effectively means that redundant search directions are ignored.
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3.4. A case where PCG and MPCG are equivalent. Consider the following case of
polynomial preconditioning.

PROPOSITION3.1. If roundoff errors are ignored, the2j-th iteration (j = 1, 2, . . .) of
PCG with a preconditionerM is identical to thejth iteration of MPCG withM−1

1 ≡ M−1

andM−1

2 ≡ M−1AM−1.

Proof. Assuming an initial guess ofx0 = 0 with initial residualr0 = b, the standard
PCG algorithm solves forx2j as the vector from the Krylov subspace

K2j(M−1A;M−1r0) = span{M−1r0, (M
−1A)M−1r0, . . . , (M

−1A)2j−1M−1r0}

that minimizes the energy norm of the error. Let us show that the same Krylov subspace
is obtained withj iterations of MPCG with the above definedM1 and M2. Note that
Z1 = P1 = [M−1r0|M−1AM−1r0] andr1 = r0 − AP1α1. Therefore the next residual
r1 ∈ span{r0, AM−1r0, AM−1AM−1r0}. The corresponding subspace from whichx is
chosen is spanned byM−1r0 andM−1AM−1r0 in the first iteration, and is extended by
M−1(AM−1)2r0 andM−1(AM−1)3r0 in the second iteration. The rest of the proof readily
follows by induction, for any given integerj, by repeating the same argument. Since MPCG
finds the vector from this subspace that minimizes the energynorm of the error, just as PCG
does, it must produce the same iterates as PCG.

3.5. The recurrence relation. For regular PCG observe that

pT
j Azi+1 = (Apj)

T zi+1

=

(

rj−1 − rj

αj

)T

zi+1

= 0 for j < i

Thus theA-conjugation step may ignore all but the previous search direction, giving the short
recurrence. Unfortunately in MPCGα is a vector and cannot be inverted, so the above does
not easily generalize. However, note that in MPCGAPjαj = rj−1 − rj . Using equation
(3.3), this means forj < i

αT
j PT

j AZi+1 = 0,(3.4)

and then after expandingαT
j ,

(

(PT
j APj)

−1(PT
j rj−1)

)T
PT

j AZi+1 = 0;

rT
j−1

(

Pj(P
T
j APj)

−1PT
j AZi+1

)

= 0.

We also knowrT
s

(

Pj(P
T
j APj)

−1PT
j AZi+1

)

= 0 for s ≥ j since thenrT
s Pj = 0. Thus

even if the updatePj(P
T
j APj)

−1PT
j AZi+1 is not zero, it is orthogonal to all residuals from

rj−1 up.

While this orthogonality condition is as close to a short recurrence relation as MPCG
generally gets, there is an important case in which it is provably short and there is no error in
the truncation: we now formulate and prove this result, beginning with a lemma.

5



LEMMA 3.2. SupposeA = B + C whereB andC are used as the preconditioners for
MPCG. Then the2 × 2 matrixZT

j AZi+1 is diagonal forj 6= i + 1.
Proof. Write out the columns of eachZ matrix and perform the multiplication explicitly:

ZT
j AZi+1 =

[

B−1rj−1|C−1rj−1

]T
(B + C)

[

B−1ri|C−1ri

]

=

[

rT
j−1B

−1(B + C)B−1ri rT
j−1B

−1(B + C)C−1ri

rT
j−1C

−1(B + C)B−1ri rT
j−1C

−1(B + C)C−1ri

]

=

[

(. . .) rT
j−1(B

−1 + C−1)ri

rT
j−1(B

−1 + C−1)ri (. . .)

]

=

[

(. . .) rT
j−1(Z

1
i+1 + Z2

i+1)
rT
j−1(Z

1
i+1 + Z2

i+1) (. . .)

]

=

[

(. . .) 0
0 (. . .)

]

where the last step uses equation (3.3).
We now prove the short recurrence for thisA = B + C case:
THEOREM 3.3. SupposeA = B + C whereB and C are SPD and are used as the

preconditioners for MPCG. Then the search directions satisfy the short recurrence relation

Pi+1 = Zi+1 − Pi(P
T
i APi)

−1PT
i AZi+1.(3.5)

Proof. To show that the sum in the generalA-conjugation formula forPi+1 collapses
to just the one term as in (3.5), we will prove thatPT

j AZi+1 = 0 for j < i. We begin our
induction argument with thej = 1 case.

For j = 1, P1 = Z1. By lemma 3.2PT
1 AZi+1 is diagonal. Also recall from equation

(3.4) thatαT
1 (PT

1 AZi+1) = 0. We argue thatα1 has all nonzero entries unlessr0 = 0: a
zero entry would indicate there is no energy norm improvement in the solution possible along
the corresponding search direction, i.e. for that column, say thea’th column pa

1 of P1, we
haverT

0 pa
1 = 0. But pa

1 = M−1
a r0, sorT

0 pa
1 cannot be zero, assuming the preconditioners are

positive definite. The only diagonal matrix which has a vector with all nonzero entries in its
null-space is the zero matrix. ThusPT

1 AZi+1 = 0.
Now assume thatPT

s AZi+1 = 0 for all s < j and let us work on the case forj. Substi-
tuting the general summation formula forPj gives

PT
j AZi+1 =

(

Zj −
j−1
∑

s=1

Ps(P
T
s APs)

−1PT
s AZj

)T

AZi+1

= ZT
j AZi+1 −

j−1
∑

s=1

ZT
j APs(P

T
s APs)

−1PT
s AZi+1.

Sinces ≤ j−1 < i in the above sum, the factorPT
s AZi+1 in each term is zero by induction,

so the sum is zero. We are left withPT
j AZi+1 = ZT

j AZi+1. Just as in the base case, we
know this is a diagonal matrix by lemma 3.2 and thatαT

j (PT
j AZi+1) = 0 by equation (3.4).

Also as in the base case note that, by the energy norm minimization property, if an entry of
αj was zero then it would have to be that the corresponding column of Pj was orthogonal to
rj−1. Say such a column ispa

j . Using the definition ofPj , we can expand:

rT
j−1p

a
j = rT

j−1z
a
j −

j−1
∑

s=1

rT
j−1Ps(P

T
s APs)

−1PT
s AZjea.
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FIG. 4.1. Convergence history for example 4.1.1: relative residualsand the components ofα throughout the
MPCG iteration forε = 0.5.

Sinces ≤ j − 1, the factorsrT
j−1Ps are zero by equation (3.1). We are left withrT

j−1z
a
j =

rT
j−1M

−1
a rj−1 which must be positive if the preconditioners are positive definite. Thus every

entry ofαj is nonzero, and so just as in the base case we must have thatPT
j AZi+1 is the zero

matrix.

3.6. Truncated MPCG. Theorem 3.3 shows that in certain cases there is no need to
use the full MPCG. Even when the recurrence relation is not short, numerical experiments
indicate that it often is acceptable to truncate theA-conjugation step to the standard short re-
currence (that is, only makePi+1 A-conjugate toPi instead of all previous search directions).
The terms we truncate are often very small, and convergence is often not significantly slowed
down by the omission. Numerical results that demonstrate this are given in Section 4.

While we do not have a full analytical justification for the expectation that a truncated
version of MPCG be effective, some insight may be provided byreferring to the result that
was obtained earlier in this section, namely that the updatePj(P

T
j APj)

−1PT
j AZi+1 is or-

thogonal to all the residuals fromrj−1 up. In practice often the terms that have been truncated
are small; this observation is supported by numerical experiments we have performed.

We define MPCG(m) to be a truncated version of MPCG in which only the lastm search
directions are used in each iteration. Note that another parameter necessary for defining (full
as well as truncated) MPCG isk, the number of preconditioners. However, to maintain
simplicity of notation, we avoid incorporating it into the definition.

4. Examples. We now present numerical examples that demonstrate the merits and po-
tential of the MPCG method, and discuss different ideas for how to choose multiple precon-
ditioners.

4.1. ADI examples . We start this section by showing how the mechanism of MPCG
works for two simple model problems with ADI preconditioning.

4.1.1. 2D Poisson with weak coupling in one direction. Consider

−uxx − εuyy = f(x, y)

on Ω = (0, 1) × (0, 1), with Dirichlet boundary conditions. We set the right-hand-side and
the boundary conditions so thatu(x, y) = cos(πx) cos(πy) is the exact solution.

Using the standard second order centered difference schemewith n grid points in each
direction (that is, with mesh sizeh = 1

n+1
), the coefficient matrix isn2 × n2, given by

A = In ⊗ Tn + εTn ⊗ In, whereTn = tri[−1, 2,−1]. We select two preconditioners in an
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ADI fashion:Mx = In⊗Tn andMy = εTn⊗In. Thus,Mx is tridiagonal and corresponds to
the discretized operator−uxx, andMy is a discrete operator corresponding to−εuyy. Since
A = Mx + My by construction, Theorem 3.3 holds and MPCG(1), which is based on short
recurrences, produces the same iteration sequence as MPCG (up to roundoff errors). Setting
ε = 1 corresponds to the standard Poisson equation, for which thesymmetry betweenx and
y implies that MPCG withMx andMy as preconditioners is tied with the standard PCG with
eitherMx or My in terms of overall computational work. (Numerical experiments indeed
confirm this.) However, for smaller values ofε the symmetry is lost and differences between
usingMx andMy are expected. We takeε = 0.5, and compare the convergence of PCG
and MPCG(1). Figure 4.1 illustrates the behavior ofα and the convergence of MPCG(1). A
32×32 grid was used. As expected,Mx dominates the search space; the graphs forα confirm
this.

Note that each iteration of MPCG(1) involves solving for twopreconditioners and hence
is more computationally expensive than a PCG iteration by a factor of nearly 2. The iteration
counts that are presented in the graphs are 206 for PCG usingMy, 102 for PCG usingMx,
and66 for MPCG(1) usingMx andMy. Thus, PCG withMx outperforms MPCG(1) whereas
PCG withMy is inferior.

The point that we are making in this example is that while there might be a single pre-
conditioner whose performance is better than a combinationof preconditioners, the detection
of the preconditioning for MPCG is done automatically, and does not rely on knowledge of
the underlying continuous problem or properties of the matrix. Indeed, not always is it pos-
sible to identify beforehand which single preconditioner is the best one to use. Even in cases
where one particular preconditioner clearly dominates, MPCG could still be useful, as a few
iterations could be executed to determine what the most effective preconditioner is, and then
one could switch to regular PCG with that choice.

4.1.2. ADI for 3D Poisson. The three-dimensional Poisson equation,∇2u = f on the
unit cube with Dirichlet boundary conditions, is discretized using standard centered finite
differences, and is solved using three preconditioners in an ADI fashion: discrete operators
that correspond to−uxx,−uyy,−uzz. We used a random right-hand-side vector and ran the
program for several meshes. The short recurrence relation does not hold in this case; this was
observed by keeping track ofPT AZ throughout the iteration. But numerical experiments
indicate that MPCG(1) performs as well as full MPCG. In otherwords, the convergence
behavior is practically not affected by the truncation. Results are given in Table 4.2. We do
not have an analytical explanation for this intriguing result.

n n3 MPCG (1) Full MPCG
8 512 32 31
16 4096 61 60
24 13824 88 88

FIG. 4.2. The Poisson equation in three dimensions, using three preconditioners, in an ADI fashion. The
right-hand-side vector in this case was random, with normaldistribution.

4.2. Domain Decomposition. One of the natural applications for MPCG is domain de-
composition: each preconditioner corresponds to (approximately) solving a restriction of the
PDE to a subdomain. MPCG will then automatically provide something akin to a coarse grid
correction: the matrix equation forα is a Galerkin projection of the matrix onto a small sub-
space with one degree of freedom per subdomain. This allows for much greater scalability
than the corresponding PCG method using just a fixed combination of subdomain solves.
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For preliminary experiments we solved the standard 5-pointPoisson problem on a square
grid with Dirichlet boundary conditions. For preconditioners we partition the domain into
disjoint rectangles, where in each of which we exactly solvethe restriction of the problem,
i.e. inverting the submatrix ofA corresponding to those unknowns. For regular PCG, we
assemble these into a standard block diagonal preconditioner. For MPCG, we treat each
subdomain solve as a separate preconditioner which can supply a unique search direction.
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FIG. 4.3. Residual norm history of PCG
and MPCG for a 2D Poisson problem on a
100×100 grid, preconditioned with two100×
50 subdomain solves.

Our first observation is that if we have just
two subdomains, then MPCG apparently (observed
to round-off error) preserves the short recurrence—
though this situation is not covered by theorem 3.3.
In this case, MPCG is noticeably more efficient
than PCG: e.g. to solve on a100 × 100 grid (with
100 × 50 subdomains) to10−10 relative residual re-
duction took PCG 49 iterations but MPCG just 37.
The cost of these iterations is dominated by the sub-
domain solves, so the small amount of extra work
that MPCG does per iteration is more than compen-
sated for by the enhanced convergence rate. Figure
4.3 shows the residual norm histories.

For more subdomains, the short recurrence
property is lost. However, we were intrigued to find
that the full (non-truncated) form of MPCG actu-
ally has significantly better scalability than standard

PCG, at least in terms of iteration counts. If we keep the subdomain size constant as we
increase the grid size, then the iteration count for PCG increases linearly with the side length
of the grid. But for full MPCG, the iteration count appears toonly increase logarithmically:
see figure 4.4 for the numbers from our numerical experiment.

Unfortunately with truncation—even keeping two or three previous iterations’ search
directions and not just one—the scalability is diminished and the results are noticeably slower.
We conjecture that truncating to one search direction leadsto a linear convergence (like PCG,
but slower), but retaining more search directions steadilyimproves the scalability, ultimately
towardsO(log n) for full MPCG. For example, MPCG(3) (keeping three previoussearch
direction groups) appears from figure 4.4 to lead toO(n2/3) iterations for ann × n grid.

Truncated Truncated Truncated
Grid Size PCG MPCG (1) MPCG (2) MPCG (3) Full MPCG

25 39 69 45 44 19
50 70 131 77 67 22

100 126 257 125 107 24

FIG. 4.4. Iteration counts for a 2D domain decomposition scalabilitytest, using approximately8 × 8 subdo-
main solves for the preconditioners.

4.3. A Model Bending Problem. Our motivation for this example is plate and shell
elasticity problems, or more generally PDE’s where the matrix to solve is the sum of relatively
easy to precondition parts (e.g. second order differentialoperators) and more challenging
parts (e.g. fourth order differential operators). We used the standard centered finite difference
discretization of

B∇4u − S∇2u +
1

∆t
u = f
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SAINV MIC(0) Combined Full Truncated Truncated
S PCG PCG PCG MPCG MPCG(1) MPCG(2)

10−3 63 146 143 48 65 57
10−2 49 126 117 40 47 47
10−1 56 81 70 35 41 41

1 122 58 54 41 54 46
10 171 56 54 44 58 50

102 186 56 54 44 61 50

FIG. 4.5. Iteration counts (to reduce the residual by10
−10 for a model bending problem. The parameterS is

the coefficient that appears in the PDE.

with clamped boundary conditions (u = ∂u
∂n = 0) on a unit square domain as a model for an

implicit time step in a bending simulation.
The biharmonic term in this problem gives rise to a non-M-matrix and can cause stan-

dard incomplete Cholesky methods to break down, though for example modified incomplete
Cholesky works very well for the other terms. A robust alternative that has been successfully
applied to difficult shell problems is Stabilized AINV[2]. We investigate using both SAINV
(on the full matrix, permuted with a minimum degree ordering, with drop tolerance 0.1) and
modified incomplete Cholesky (on all terms except the biharmonic operator, using the regular
grid ordering, with level 0 fill) in MPCG.

Our test case uses a100 × 100 grid, B = 10−6, ∆t = 10−2, and various values forS.
Our motivation for these specific choices is related to scaling of the operators. We present
iteration counts for PCG with the two different preconditioners as well as their sum (i.e. giving
them equal weight), for full MPCG, and for truncated MPCG(1)and MPCG(2) in figure 4.5.

Observe that as the relative importance of the second-orderterm changes, the effective-
ness of PCG with a particular choice of preconditioners varies significantly. Meanwhile,
full MPCG followed closely by truncated MPCG(2) robustly achieve the minimum iteration
counts—though of course doing more work per iteration. For the more imbalanced problems
(S very small or very large) it is almost certain that PCG with the appropriate preconditioner
will be the clear winner in terms of actual time, but for the more interesting balanced cases—
where it is uncleara priori what the appropriate preconditioner is—truncated MPCG could
be a very competitive, robust choice.

To illustrate some of the dynamic behavior of MPCG, we plot the two components ofα
for full MPCG in theS = 0.1 problem in figure 4.6. While the contribution from the SAINV
preconditioner remains steady, the contribution from the modified incomplete Cholesky pre-
conditioner steadily grows. We hypothesize this is due to SAINV being more effective over-
all, but MIC(0) doing a better job on low frequencies—which eventually are all that is left
after SAINV deals with the rest of the spectrum. These steadily changing weights could not
be duplicated by a fixed combination in regular PCG. Interestingly, we do not see the upwards
trend in truncated MPCG: further investigation is requiredto understand this behavior.

We have observed variations on this problem where MPCG does not fare as well. From
these experiments it appears MPCG usually behaves in one of two ways (excepting the scal-
able domain decomposition results in the previous section where we get the coarse grid cor-
rection effect). In some problems the multiple preconditioners act synergistically, and the full
and truncated forms of MPCG perform comparably: the additional search directions from the
multiple preconditioners more than make up for the loss of global orthogonality and attendant
loss of global optimality. For other problems truncated MPCG performs poorly, and while
full MPCG necessarily converges in fewer iterations than simple PCG, it appears not to af-
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FIG. 4.6. Plots of how the two components ofα (one for the SAINV preconditioner and the second for the
modified incomplete Cholesky preconditioner) evolve over the iterations for full MPCG applied to theS = 0.1

bending problem. The second plot shows the relative change from the initial value ofα.

ford a major improvement: the extra search directions are nearly redundant, so PCG with its
guarantee of global optimality is more efficient than truncated MPCG.

5. Discussion and future research. The MPCG method derived in this paper estab-
lishes a class of algorithms that are distinct from Krylov subspace solvers that we have seen
so far in the literature. A feature of the method is that the choice of ‘optimal’ precondition-
ing (in an energy minimization sense, as described in Section 3) is done automatically. We
believe that this is a promising approach, in particular in atime when research in the field
of numerical linear algebra is shifting away from fine-tuning Krylov solvers towards relying
more strongly on effective preconditioning methodologies.

The method we propose is different from flexible methods since the preconditioners in
MPCG are fixed and do not change throughout the iteration. It is also different from block
methods, which maintain multiple search directions from the start but only use a single pre-
conditioner. Our algorithm constructs a generalized Krylov space whose dimension is pro-
portional to the number of preconditioners incorporated.

Short recurrences cannot generally be preserved when more than one preconditioner is
involved. But we were able to show that for two preconditioners whose sum is equal to the co-
efficient matrix itself, a short recurrence relation holds and the truncated algorithm MPCG(1)
can be used without giving away anything. In addition, we have experimentally observed two
interesting phenomena which our analysis does not cover. Inthe three-dimensional Poisson
equation with three ADI preconditioners MPCG(1) convergesas fast as full MPCG, even
though the short recurrence relation does not hold. Furthermore in a nonoverlapping do-
main decomposition test problem we have observed that the short recurrence holds for two
subdomains. When more than two subdomains are applied the short recurrence is lost, but
scalability remains very good, as is demonstrated in section 4.2.

In many complicated and large scale problems, the choice of apreconditioner is not ob-
vious, and if more than one candidate is available, a fixed combination of the preconditioners
may not work well enough. This is where the mechanism of MPCG may come in handy, since
it determines throughout the iteration how to combine the preconditioners. Even if MPCG
ultimately is not faster than PCG with the right selection ofpreconditioner, a few iterations
of MPCG may robustly identify what that selection should be.

Parallelism may be another strong point of MPCG. While we havenot implemented
our algorithm in a parallel environment, it is evident that the time-consuming stepZi+1 =
[M−1

1 ri|M−1

2 ri| . . . |M−1

k ri] can be straightforwardly parallelized. We also envision that
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there may be useful parallel speed-up even from highly sequential preconditioners: e.g. in-
stead of running PCG with incomplete Cholesky, leaving halfof a dual-processor workstation
sitting idle, two variations on incomplete Cholesky could be run in parallel with MPCG.

Future research may extend into several directions. Domaindecomposition applications
naturally lend themselves to an approach such as MPCG, particularly if the physics of one
domain is significantly different than the physics of another domain (e.g. due to material in-
terfaces). Singular preconditioners that practically affect only one particular subdomain could
be used. Also, a flexible variant of MPCG might prove useful: allowing the preconditioners
to vary throughout the iteration, for example if they are applied to sub-problems using PCG
with a rough convergence tolerance.

Again recall that in the domain decomposition example our preconditioners were sin-
gular. Regular PCG of course cannot tolerate preconditioners whose null-spaces overlap the
span of the right hand side. It is tempting to ask if we can pushthis further, with precondi-
tioners that are even slightly indefinite (in different subspaces). A motivating case here is the
sparse approximate inverse SPAI [6] whose definiteness is difficult to determine.

Another possible research direction is the derivation of multi-preconditioned solvers for
other classes of linear systems. In particular, since GMRES[13] does not possess a short
recurrence relation multi-preconditioned GMRES may be very competitive.

A M ATLAB implementation of the multi-preconditioned conjugate gradient method is
available at [4]. The authors welcome comments and suggestions.

Acknowledgments. We thank Edmond Chow for his modified incomplete Cholesky
code, which was used in the model bending example.
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