
Animating Developable Surfaces using

Nonconforming Elements

Elliot English

eenglish@cs.ubc.ca

University of British Columbia

Advisor: Robert Bridson

May 1, 2008

1

Figure 1: Frames from an animation of exactly developable cloth, with complex
collisions. The underlying simulation mesh only bends; it has zero stretch or
compression in every direction.

1 Introduction

Many deformable surfaces, ranging from most types of cloth to paper [15, 4]
and stiffer materials, are well approximated as developable: they bend out-of-
plane but do not visibly stretch or compress in-plane. Even for materials which
do allow some in-plane deformation, e.g. small amounts of shearing in a fabric
relative to the warp and weft directions, if the simulator cannot handle the
developable limit there are bound to be numerical problems as users attempt to
approach it. Thus in this thesis I focus attention on the fully developable case,
imposing zero in-plane deformation as a hard constraint, though of course the
technique present here is easily generalized to stretchy or shearable materials
(though, note that if stretchy enough that existing simulators can accurately
handle them, the constant factor overheads of the presented method will make
it uncompetitive).

Unfortunately, standard graphics simulators break down precisely at this
limit. For example, for a triangle mesh with the usual piecewise linear elements,
developability implies that each triangle remain rigid. For any nontrivial bend-
ing this constraint must be violated: the mesh can essentially only crease along
straight lines already present in the mesh as edges: it locks.

The general phenomena of locking, i.e. the inability of a given finite ele-
ment space to approximate solutions [5, 12], was recently brought to light in
graphics for volume-conserving volumetric simulations by Irving et al.[13]. In
the developable surface case, Liu et al.’s rigorous analysis shows that a general
n-triangle conforming mesh only has O(

√
n) degrees of freedom[16], with signif-

icant mesh-dependent artifacts. Similar arguments show that quad meshes with
bilinear elements suffer from the same locking problem, as do many higher order
polynomial elements. For stiff but not fully constrained cloth models, e.g. where
edges may change their length slightly, locking manifests as a spurious increased
resistance to bending, proportional to the in-plane stiffness rather than the true
bending stiffness.

The classic solution to the locking problem for volume-conserving deforma-
tions is to use nonconforming elements [5]. Rather than reduce the number
of constraints by averaging over larger regions as Irving et al. propose, finite
element practitioners traditionally increase the number of variables, by putting

2

Figure 2: Schematic of nonconforming variables, located at midpoints of edges
between triangles. While continuous at these points, the surface may be discon-
tinuous along the rest of each edge.

the variables at the midpoints of edges (in 2D) or faces (in 3D).1 I adopt this
approach for the deformable surface case by putting the position variables at
the midpoints of the edges rather than at the vertices of the triangles in the
mesh (see figure 2). This now gives 3e ≈ 9v variables, and to make each linear
triangle rigid only implies 3t ≈ 6v constraints, leaving approximately 3v true
degrees of freedom for bending—allowing the method to accurately approximate
developable surfaces. The first part of this thesis gives the details on this ap-
proach: how to enforce developability, special treatment of boundary elements,
and a crude model for bending forces.

However, the discrete surfaces that now arise are nonconforming, i.e. no
longer necessarily continuous: adjacent triangles only have to meet at the mid-
point of the common edge, not necessarily at vertices. This clearly poses a
problem for robust collision processing and rendering. I therefore propose the
coupling of a “ghost” conforming mesh (with the usual vertex variables) to the
simulation, used solely for collisions and rendering.

Finally, since the method imposes developability as a hard constraint, turn-
ing to time integration of constrained mechanics. The usual schemes in graphics
unfortunately suffer from strong numerical damping with nonlinear constraints,
as energy is erroneously transferred to constrained modes and projected out. I
propose a new second order accurate multistep method, based on BDF2 and sim-
ple position-based constraint projection. This both reduces numerical damping
and speeds projection (since the surface remains closer to the constraint mani-
fold), without need for stabilization or velocity projection.

1This may be identified as the lowest order Crouzeix-Raviart element.

3

2 Previous Work

Cloth simulation has a long history within computer graphics; works highlighted
here are just a sampling of the relevant papers from the standpoint of the
developable limit.

Provot[18] worked with mass-spring models, introducing a loose constraint
on edges to not deform by more than 10% with a simple Gauss-Seidel itera-
tion. Bridson et al.[7] demonstrated improved buckling behavior if edges were
(loosely) constrained to not compress at all, just stretch. The critical aspect
of this approach, though not identified at the time, was that triangles were left
with some freedom to deform, fortuitously avoiding the locking problem. Of
course, this can’t realistically handle the many materials which more severely
limit strain, and the Gauss-Seidel constraint iteration tends to induce mesh-
dependent artifacts. This paper also makes use of the robust collision processing
algorithm (for conforming triangle meshes) developed by Bridson et al.[6] from
earlier work by Provot [19].

Baraff and Witkin[2] instead proposed a semi-implicit Backwards Euler inte-
grator to avoid the stability time step restriction plaguing explicit time integra-
tion of stiff models. Later authors argued that the strong numerical damping
present in Backwards Euler was responsible for the fairly smooth appearance of
the Baraff and Witkin results; I suspect a large share of the problem was lock-
ing, as very stiff in-plane forces brought the material model close to developable,
causing spurious numerical resistance to bending.

Choi and Ko[8] introduced the second order accurate BDF2 method to cloth
simulation, which features much reduced damping yet still has stiff decay [1],
of crucial importance for dealing with stiff systems.2 They also fortuitously
avoided locking with their implicit model of the buckling instability, allowing
edges in their model to compress easily while still offering stiff resistance to
stretch. (This can also be viewed as using biphasic springs, with lower resis-
tance to compression than stretch.) This is an attractive solution for much of
the large-scale motion of the cloth, but the buckling model causes small-scale
details to remain implicit—i.e. not visible in the simulation mesh. Attempts
at procedurally adding in the missing detail have met with mixed success (e.g.
[22, 14, 21]).

More recently Goldenthal et al.[10] demonstrated an effective approach to
constraining a quad-dominant cloth mesh to zero deformation along the warp
and weft directions. They avoid locking by requiring most of the mesh to use
quad elements, and by not constraining shearing: this leaves enough degrees of
freedom to accurately and beautifully capture many fabrics of interest, but it
cannot be extended to the developable no-shear limit or to triangle meshes. The
new constrained mechanics time integration scheme presented hre is a multistep
extension of Goldenthal et al.’s fast projection method.

Bergou et al.[3] introduced the nonconforming elements used here in the

2By contrast, implicit symplectic integrators, such as certain Newmark schemes, cannot

possess stiff decay and thus exhibit objectionable temporal aliasing of high frequency modes

into low frequency modes when using large time steps.

4

Figure 3: On the left is a square of developable surface pinned at two corners:
we enforce zero in-plane deformation to a relative error tolerance of 10−4, giving
virtually no sag along the top edge. Extra constraints ensure realistic behavior
at the boundaries. To the right is a irregularly meshed nonplanar shirt worn by
a moving character.

context of deriving a compact stencil for bending forces on conforming meshes;
this work generalizes the elements to use them for in-plane dynamics to solve
locking.

Liu et al.[16] imposed developability as a constraint on conforming trian-
gle meshes, proving that n triangles give you O(

√
n) degrees of freedom under

isotropic conditions. In a regularly spaced plane, these degrees of freedom man-
ifest themselves as the bending angles along parallel edges in both horizontal
and vertical directions as well as the one diagonal direction. The simulation
algorithm is based upon the integration of these degrees of freedom, explicitly
defining them by iteratively walking through the mesh and assigning degrees
of freedom to under constrained features as they are visited. The crucial dif-
ference between this model and previous methods discussed is that the model
by definition is developable for any values of these degrees of freedom. Locking
is inherent to this model, independently of the mesh resolution, with artifacts
remaining even in the limit. Additionally, this geometric model makes handling
collisions extremely difficult while maintaining the developable constraint.

3 Simulation Model

3.1 A Nonconforming Element Discretization

Beginning with a regular triangle mesh in parameter or “object” space, with
the midpoint of each edge i at parameter space position pi as in figure 2. Each
edge variable also has a world space position xi, a velocity vi, etc. Within a

5

triangle with edges i, j, and k, the variables are extended with linear interpo-
lation/extrapolation: e.g. from geometric similarity the world space position of
the vertex located at the corner opposite edge i is xj + xk − xi. This can also
be phraseed in terms of piecewise linear basis functions {φi}, where φi(p) is 1
all along edge i and zero at the midpoints of all other edges: x(p) =

∑

i xiφi(p).
The mass mi associated with edge i is simply a third of the mass of the sum

of the masses of the incident triangles; these can be assembled into a diagonal
mass matrix M , with each mass repeated three times. Newton’s law is then
DA2/dt2 = M−1F , where F is a vector of the net forces on each edge.

For a regular elastic material, one could use the usual Galerkin finite element
discretization (see Brenner and Scott[5] for example), integrating gradients of
the nonconforming basis functions over each triangle as appropriate to get a
stiffness matrix, but—crucially—avoiding integrating over the jump discontinu-
ities on the edges between triangles.

However in the developable limit, an equivalent but simpler formulation is
possible. The deformation gradient in each triangle is the gradient of world space
position w.r.t. parameter values. For linear elements, this is constant in each
triangle; to avoid in-plane deformation, this gradient matrix must be orthogonal,
i.e. the world space pose of each triangle must be a rigid transformation of the
parameter space pose. A triangle is rigid if and only if the distance between
any two edge midpoints remains constant, giving three constraints per triangle
of the form

cij(x) = ‖xi − xj‖2 − d2
ij = 0 (1)

where dij is the parameter space distance between edge midpoints i and j. These
constraints are then assembled into one column-vector-valued function C(x).

This is now a discrete constrained mechanics problem, with Lagrange mul-
tiplier constraint forces of the form

Fc =

(

∂C

∂x

)T

λ = JT λ (2)

where J = ∂C/∂x is the Jacobian of the constraint function and λ is a vector
containing one Lagrange multiplier per constraint. In section 5.1 I will discuss
methods for integrating this motion.

While this model is robust when the motion of the triangles along the edges
of the mesh is prescribed, for more typical free boundary situations artifacts
do arise: the per-triangle rigidity constraints aren’t quite enough here. For
example, a corner triangle with two boundary edges—and thus only one edge
shared with another triangles—is free to rotate arbitrarily, independent of the
orientations of nearby triangles. Even if a triangle only has one boundary edge,
and is connected to the rest of the mesh at two edge midpoints, it is also free
to spin around one axis independently of the orientations of nearby triangles.
In fact, even when restricted to planar motion the model fails: the only planar
developable motions are globally rigid, yet this model allows additional defor-
mations.3 In the planar elasticity context, this is a known instability due to free

3This may be familiar from condensed matter physics under the topic of Kagome Lattices.

6

Figure 4: Without additional boundary constraints underconstrained elements
have spurious degrees of freedom.

traction boundary conditions (as opposed to displacement boundary conditions,
i.e. prescribed positions): see e.g. Falk[9].

Thus further boundary constraints are needed: I require that for each bound-
ary vertex the corresponding vertices on the incident nonconforming elements
conform. As a result these elements are also C0 along their shared edges, have
their orientations properly coupled, and no longer have spurious rotational free-
dom: the outer “ribbon” of triangles, i.e. all those that touch the boundary, are
forced to be conforming while the interior of the mesh is still free to be non-
conforming. Figure 3, showing a rectangle pinned at two corners, illustrates the
robustness of this approach. This also resolves the planar deformation problem,
since the only solution for the conforming outer ribbon is globally rigid motion,
which induces a rigid position boundary condition on the interior nonconform-
ing elements which in turn has been proven to only have the expected rigid
motion as a solution [5].

3.2 Bending Forces

While discretization of bending forces is not the focus of this paper, obviously
conforming mesh methods based on vertex unknowns can’t be directly applied.
Traditional finite element approaches for plate or shell problems (or the bihar-
monic model problem) include a different nonconforming scheme, the Morley
element: a piecewise quadratic with nodal variables at triangle vertices and
normal derivatives variables at edge midpoints. However, the piecewise lin-

7

ear element presented above can’t directly be used in the traditional Galerkin
framework for bending, since the associated bilinear form uses second derivatives
which, for linear elements, are exactly zero.

This is the case for conforming linear elements too, of course, and just as
graphics researchers have done in that case, slightly more exotic mixed finite
element methods can be used. Wardetzky et al.[23] recently published an al-
ternative derivation based on discrete geometric principles, albeit restricted to
the conforming mesh case: while they use the same linear edge-based elements,
they only use the conforming subspace, mapping edge unknowns back to vertex
variables. Like Wardetzky et al. and earlier work by Bergou et al.[3] the highly
nonlinear bending energy is reduced to a simple quadratic form by exploiting
developability—though whereas for earlier papers this was a rough approxima-
tion, the nonconforming surfaces here will be exactly developable and thus no
approximation is necessary. That is to write the bending potential energy as:

Eb =
kb

2

∫∫

‖∇2x‖2dp (3)

where the integral is taken in parameter space, kb is the bending stiffness pa-
rameter, and ∇2x is the Laplacian of world space positions with respect to
parameter space values. Introduce a secondary variable u as a stand-in for the
Laplacian of x:

Eb =
kb

2

∫∫

‖u‖2dp, u = ∇2x (4)

Now discretize both x and u with the linear nonconforming elements given
above, represented with nodal basis functions {φi}:

x(p) =
∑

i

xiφi(p), u(p) =
∑

i

uiφi(p) (5)

Substituting these in to the mixed form of the bending energy, equation 4, and
integrating the u = ∇2x equation with φj with the usual integration by parts
and neglecting boundary terms for now, gives after rearranging:

Eb =
kb

2

∑

i

∑

j

(
∫∫

φiφjdp

)

ui · uj

∑

i

(
∫∫

φiφjdp

)

ui = −
∑

i

(
∫∫

∇φi · ∇φjdp

)

xi

(6)

These integrals are evaluated per triangle, again avoiding the discontinuous
jumps along edges. Let K be the stiffness matrix for the Laplacian, Kij =
∫∫

∇φi · ∇φjdp, and W be the mass matrix, Wij =
∫∫

φiφjdp, which can be
verified to be diagonal. Arrving at:

Eb = 1
2kbu

T Wu, Wu = −Kx (7)

Eliminating u gives the final discrete bending energy:

Eb = 1
2kbx

T KT W−1Kx (8)

8

Elastic bending forces on the edges are simply the gradient of the bending
potential energy:

Fb = Bx (9)

where B = kbK
T W−1K. Note that B is necessarily symmetric positive semi-

definite, with a null-space that includes all unbent (linear) configurations of the
mesh, as expected. Implicit time integration using B is straightforward.

The issue of bending boundary conditions is avoided by simply zeroing out
rows of K corresponding to boundary variables before forming B, which in
practice seems to give plausible behavior.

4 Collisions and Rendering

4.1 Ghost Mesh Coupling

The nonconforming surface may have jump discontinuities along edges, apart
from at the midpoints. Rendering this surface directly shows undesirable cracks
between triangles. Similarly if the cloth collision algorithm were run on it po-
tentially fatal scenarios could arise as the exposed edges of the nonconforming
elements would allow the elements to tangle with or pass through one another.

One solution to these problems is to maintain a ghost conforming mesh (with
vertex-based positions, see figure 5) of the same topology as the nonconforming
mesh, initialized with the same geometry. Each time step begins by computing
candidate new edge positions xn and velocities vn for the nonconforming mesh
based on non-collision forces (gravity, internal constraints, bending, etc.). These
are then transfered to candidate new vertex positions xc and velocities vc for the
conforming mesh, by taking the average at each vertex of the nonconforming
values extrapolated from all incident triangles. This is then represented with
an averaging matrix A:

xc = Axn (10)

These give candidate conforming mesh trajectories, from the positions at the
end of the last time step xold

c (which are guaranteed to be non-interpenetrating)
to the new conforming positions xc, with new velocities vc = Avn. This mesh is
then fed into a standard cloth collision code [6] to solve for the final conform-
ing positions x′

c and velocities v′c, which should be non-interpenetrating. This
new intersection-free conforming mesh is saved for later rendering and collision
processing in the following step.

Once operations on the conforming mesh are complete the nonconforming
mesh is updated to its final positions x′

n, coupling the effect of collisions back into
the main simulation. Taking a Lagrange multiplier form for the nonconforming
correction:

x′
n = xn + AT λ (11)

where λ is chosen so that averaging the final nonconforming positions x′
n back

to the conforming mesh vertices returns the final conforming positions:

Ax′
n = x′

c (12)

9

Figure 5: The ghost mesh closely tracks the nonconforming mesh while main-
taining a penetration free state.

This gives a simple symmetric positive definite linear system to solve, which
simplifies to:

AAT λ = x′
c − xc (13)

Note that the coefficient matrix AAT is constant, thus Cholesky factorization
can be run once and then very efficiently solve this at every subsequent time
step. Also note that if no collisions occur, the nonconforming positions are not
modified at all, as one would expect. Finally the process concludes by updating
the nonconforming velocities in a consistent manner:

v′n = vn +
x′

n − xn

∆t
(14)

also noting here that in the absence of collisions the velocities are not modified
at all.

In summary, after advancing the nonconforming mesh, I update the conform-
ing mesh by averaging vertices, run collision handling, and then use Lagrange
multipliers to update the nonconforming mesh. Figures 1 and 9 show the ro-
bustness of this scheme, guaranteeing an intersection-free conforming mesh that
closely tracks the simulation even in complex self-folding scenarios.

While this method has produced reasonable results, there are two chief issues
I would like to resolve in future work. The first is that the simple averaging
to get the conforming mesh often doesn’t provide as smooth a surface as might
be desired, as might be expected since the sampling density of the conforming
mesh is in fact lower, and that the conforming mesh is only approximately
developable (though its motion does show the particular developable dynamics
of the underlying nonconforming mesh). One possible solution is to use edge
subdivision schemes (e.g. [17]) which may help here. The other issue is that
collisions are handled after internal dynamics, introducing an O(∆t) splitting
error which can perturb developability. I have not noticed any obvious artifacts
stemming from these issues, but in principle they could be a concern especially
in severe collision scenarios with large time steps.

10

Figure 6: A 2d dimensional hash grid acceleration structure showing two swept
vertices and one swept edge. Note that the bounding boxes of the higher vertice
and the edge are disjoint with respect to the grid cells the occupy, allowing for
quick elimination.

4.2 Collision Handling

Given an arbitrary triangular mesh two distinct types of collisions can occur,
these being triangle-vertex and edge-edge collisions. The assumption is then
made the motion of each vertex over the course of a time step is linear, allowing
collisions to then be found by linearly sweeping each feature. In 4 dimensional
this represents vertices as lines, edges as bilinear patches and triangles as prisms
with bilinear patch sides. The problem is then reduced to finding the roots of
the signed volume of the tetrahedron formed by the four vertices as a function
of time. Additionally, at each candidate time that lies within the current time
step, proceeding in order from the earliest time, the geometry is checked for a
proximity of 0 and not merely coplanarity.

As per [6] the cloth collision handling algorithm procedes in three stages.
The first is a repulsion force stage intended to maintain a small separation

distance between all of the cloth geometry at the current position (see figure 7).
Given two features that have a proximity of less than the separation distance,
the updated relative normal velocity becomes

v1
n = max(v0

n · n,
d0 − d

∆tT 0
)n (15)

where d0 is the desired separation distance, d is the current separation dis-
tance, n is the normal direction point in the separating direction of the relative
velocity and v0

n is the current relative normal velocity. T 0 is a constant spec-
ifying the time for the features to reach the separation distance. Additionally
during this phase friction impulses are applied by The updated relative tangen-
tial velocity is defined as

11

v1
n

v0
n

d0

Figure 7

v1
t = max(0, 1 − µ

|v1
n − v0

n|
|vt

0|
)v0

t (16)

where µ is the coefficient of friction.
In the second stage swept collision testing to used to identify pairs that

collide over the time interval between the current and previous steps. Upon
detecting a collision, an impulse is applied to the geometry setting the relative
normal velocity to zero, vn = 0.

In the final stage, in order to ensure that no collisions are present once
collision processing is finished, rigid impact zones are calculated. This proceeds
by checking for collisions as in the second step, except that when a collision is
detected the impact zones for each of the four vertices involved are merged and
the new rigid motion is calculated and applied to each vertex in this new impact
zone. The rigid motion is found by adding up the inertia matrices of each vertex
and their momentums about the center of mass and then calculating the new
rigid velocities for each vertex (see [6, 19] for details). Initially, each vertex is in
their own impact zone, with the algorithm continuing until either there are no
more collisions or all the vertices are in the same impact zone, guaranteeing no
collisions in the final solution since the vertices no longer move relative to one
another.

In order to accelerate feature proximity calculation and collision detection a
spatial subdivision structure is used to quickly eliminate geometry that neither
collides or is in close proximity. The major requirement of this structure is that
it can be updated in constant time as the space occupide by the each swept
volumes can change during collision processing. Tradional hierarchical struc-
tures such as oriented bounding box trees [11] require expensive recomputation
of principle axes at every update if a tight bound is to be maintained. Instead,
I implemented a three dimensional hash grid in to which geometry is scanned
based up their bounding box (see figure 6). Additionally, when querying the
grid for intersections with a bounding box, a procedure known as mail-boxing is
used in order to prevent features from being redundently added to the candidate
list. Simply by assigning a query id, and tracking the last query id by feature,
each feature can then be added only once to the candidate list per query.

In the collision repulsion stage only the current positions are used when
determining proximity so only the bounding boxes based upon current positions

12

are scanned into the acceleration grid at this time. In the collision impulse and
rigid impact zones stages, first a list of all possible triangle-vertex and edge-edge
collision candidates are assembled into a queue. This queue is then traversed and
upon handling a collision all affected neighboring geometry is then rechecked for
collisions and candidates added to the end of the queue. One final optimization
is that by assuming most if not all collisions are handled by the collision impulses
stage, the remaining candidate list is then passed to the rigid impact zone stage
since all entries not on the list are known to not be intersecting given the current
state.

5 Time Integration of Constraints

5.1 Reduced Numerical Dissipation Time Integration

Goldenthal et al.[10] introduced “fast projection”, a particularly attractive first
order accurate time integrator for constrained mechanics. This may be derived,
heuristically at least, as the limit of Backwards Euler applied to a system where
hard constraints C(x) = 0 are replaced with very stiff elastic forces Fc(x) =
−kJT (x)C(x), the gradient of the potential 1

2k‖C(x)‖2. Backwards Euler to
get to time step n + 1 is:

x(n+1) = x(n) + ∆tv(n+1)

v(n+1) = v(n) + ∆tM−1(Fa − kJT C)
(17)

where Fa are the applied non-constraint forces (gravity and bending), and J
and C are evaluated at x(n+1). Eliminating velocity:

x(n+1) + k∆t2M−1JT C = x(n) + ∆tv(n) + ∆t2M−1Fa (18)

Taking the limit as k → ∞ can be shown, at least for constraints close enough
to linear in a local neighborhood, to give the fast projection algorithm:

x0 = x(n) + ∆tv(n) + ∆t2M−1Fa

x(n+1) = project(x0)
(19)

Here x0 is a predicted position, and the second step projects this onto the
constraint manifold, so that C(x(n+1)) = 0. Once the new x(n+1) is found,
the new velocity can be determined from the Backwards Euler step x(n+1) =
x(n) + ∆tv(n+1).

While elegant and effective, this algorithm can suffer from numerical damp-
ing when the constraints are nonlinear. From a velocity perspective, even if the
time n velocity is tangent to the constraint manifold at x(n), the tangent space
changes at x(n+1) so the velocity components now normal to the constraint are
projected out, for a net loss of kinetic energy.

I therefore propose a multistep version of this algorithm, based instead on
the second order accurate multistep method BDF2, which similarly has stiff

13

x

xproj

xpred

O(L3)

Figure 8: The red dot is the predicted position, the blue dot is the projected
position and the green dot is the correct position.

decay[1] and thus also allows a stiff limit. Assuming constant step sizes, BDF2
can be written as:

x(n+1) = 4
3x(n) − 1

3x(n−1) + 2
3∆tv(n+1)

v(n+1) = 4
3v(n) − 1

3v(n−1) + 2
3∆tM−1F (x(n+1))

(20)

Eliminating velocity as before gives:

x(n+1) = 4
3x(n) − 1

3x(n−1) + 8
9∆tv(n) − 2

9v(n−1)

+ 4
9∆t2M−1F (x(n+1)) (21)

Breaking this up into a prediction step followed by a first order projection to
the constraint:

x0 = 4
3x(n) − 1

3x(n−1) + 8
9∆tv(n) − 2

9v(n−1)

+ 4
9∆t2M−1F

x(n+1) = project(x0)

(22)

Finally the time n + 1 velocity is taken from the BDF2 formula for the position
update, which can be rewritten as:

v(n+1) = 1
∆t

[

3
2x(n+1) − 2x(n) + 1

2x(n−1)
]

(23)

The basic steps of the algorithm are the same as before, just with a few
extra vector adds in finding the predicted position and final velocity, which is

14

of negligible cost compared to the projection operation. The error analysis is
nontrivial, since at first glance the second order truncation error in the pro-
jection would seem to give a globally first order method. However, while the
predicted position is indeed O(∆t2) away from the constraint manifold, most
of this error is normal to the manifold itself and is eliminated by projection:
numerical experiments indicate that after projection the position only suffers
O(∆t3) truncation error, and together with the third order error in velocity,
this results in a globally second order accurate algorithm. This can easily be
verified for the simple case of motion constrained to a circle as shown in figure
8, for example: a step of length L off the circle on a tangent gives a predicted
position xpred = (1, L). The correct position is x = (cos(L), sin(l)), giving a
distance error of |xpred −x| = |(1− cos(L), L− sin(L))| which when cos and sin
are represented with Taylor series gives,

|xpred − x| = |(1 − cos(L), L − sin(L))|
= |(1 − (1 − O(L2)), L − (L + O(L3)))|
= |(O(L2), O(l3))|
=

√

O(L2)2 + O(L3)2

<= O(L2)

(24)

Instead, the predicted position projected back to the cicle is xproj =
xpred

|xpred| =

(1√
1+L2

, L√
1+L2

). Using a Taylor series to represent both terms in the distance

error here results in a cancellation,

|xproj − x| = (
1√

1 + L2
− cos(L),

L√
1 + L2

− sin(L))

= ((1 − L2

2
+ O(L4)) − (1 − L2

2
+ O(L4)), (L + O(L3)) − (L + O(L3)))

= (O(L4), O(L3))

=
√

O(L4)2 + O(L3)2

<= O(L3)
(25)

Additional benefits include an order of magnitude less numerical dissipa-
tion, due to higher accuracy, and typically improved projection times: by using
additional information from previous steps about the constraint manifold, the
predicted position tends to stay closer to the manifold and requires fewer iter-
ations in projection.

5.2 Constraint Projection

Given the constraint as defined in (1), I take the first order Taylor series

15

Figure 9: A developable surface is dropped on a sphere, with immediate wrin-
kling and creasing patterns.

Cx0
(x) = C(x0) +

∂C(x0)

∂x
(x − x0) + O((x − x0)

2)

C(x) = C + J(x − x0) + O((x − x0)
2)

(26)

into which I substitute the the lagrange multiplier force, as defined in (2),
to get out updated values

0 = C + J(x0 + W−1JT λ − x0)

= C + JW−1JT λ
(27)

I then solve for the lagrange multiplier,

λ = −(JW−1JT)−1C + O((x − x0)
2) (28)

and substitute this back into the updated formula for the position update,
giving the final postion

x = x0 − W−1JT (JWT J)−1C (29)

This gives a second order approximation of x0 projected onto the constraint
manifold. In order to make this algorithm more robust, I iteratively update
the Taylor series terms. As a final improvement I perform a line search at each
iteration starting with l = 1, halving it until the relative error of the constraint
is less than that of the previous iteration. The update formula is given,

16

Figure 10: Collisions are robustly handled as a nondynamically driven figure
walks wearing a cape.

xi+1(l) = xi − l(W−1J(xi)
T (J(xi)W

T J(xi))
−1C(xi)) (30)

The projection stage is completed when C(xi)/d is below some tolerance,
where d is the edge lengths as defined in (1).

6 Results

Figures 1, 3 and 9 show example frames from simulations. I rendered the
raw conforming mesh, with smoothed vertex normals but no subdivision. The
meshes were 100 × 100, and simulations ran at 9.52 seconds/step with time
steps of 1ms on an Athlon 64 3500+, with PARDISO [20] as the linear solver. I
ran fast projection with a tolerance on maximum relative error of 10−4, taking
10 Newton steps on average. Due to step size, collision handling was a small
fraction of total run time.

I also simulated a moving skinned character wearing a cape (see figure 10) to
evaluate the new integration scheme; simulation time was reduced to 3.96 from
5.37 seconds/step for the single step scheme, as the multistep method required
on average half the number of iterations for the projection stage to converge.
Similarly a skinned character wearing an irregularly meshed shirt (see figure
3), of higher resolution than the cape, ran at 4.58 seconds/step using the new

17

Figure 11: The coupled ghost mesh collapses as the conforming mesh folds in
upon itself. The rest state is that of a perfectly regular cylinder.

scheme.

7 Conclusions

I have presented an effective new discretization for deformable surfaces which
can robustly handle developable surfaces without locking artifacts at any mesh
resolution. Since the underlying nonconforming simulation mesh isn’t continu-
ous, I couple in a conforming ghost mesh to handle contact and collisions and for
rendering. In addition, I provided a second order accurate multistep constrained
mechanics time integration scheme based on BDF2, using just position projec-
tion, which both accelerates fast projection and significantly reduces numerical
damping.

8 Future Work

In future work I am particularly interested in resolving the issues brought up
by the ghost conforming mesh, such the collapsing cylinder show in figure 11
as well as rigorously analyzing the momentum transfer and energy dissipation
of the coupling method. Edge subdivision schemes (in lieu of simple vertex
averaging) may improve the smoothness of the rendered output, and coupling

18

internal dynamics and collisions, similar to Baraff and Witkin’s method[2], may
avoid perturbations from developability caused by time splitting.

Acknowledgements

This work was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada.

References

[1] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations. SIAM, Philadel-
phia, PA, USA, 1998.

[2] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proc.
ACM SIGGRAPH, pages 43–54, 1998.

[3] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and E. Grinspun. A
quadratic bending model for inextensible surfaces. In Symp. Geometry
Processing, pages 227–230, 2006.

[4] Pengbo Bo and Wenping Wang. Geodesic-controlled developable surfaces
for modeling paper bending. Computer Graphics Forum, 26(3):365–374,
2007.

[5] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods (2nd ed.). Springer, 2002.

[6] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment
of collisions, contact and friction for cloth animation. ACM Trans. Graph.
(Proc. SIGGRAPH), 21(3):594–603, 2002.

[7] Robert Bridson, Sebastian Marino, and Ronald Fedkiw. Simulation of
clothing with folds and wrinkles. In Symp. Comp. Anim., 2003.

[8] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. ACM
Trans. Graph. (Proc. SIGGRAPH), 21(3):604–611, 2002.

[9] Richard S. Falk. Nonconforming finite element methods for the equations
of linear elasticity. Math. Comp., 57(196):529–550, 1991.

[10] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and
Eitan Grinspun. Efficient simulation of inextensible cloth. ACM Trans.
Graph. (Proc. SIGGRAPH), 26(3), 2007.

[11] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. Computer Graphics, 30(Annual
Conference Series):171–180, 1996.

19

[12] Michael Hauth. Visual Simulation of Deformable Models. PhD thesis, July
2004.

[13] Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw. Volume conserving
finite element simulations of deformable models. ACM Trans. Graph. (Proc.
SIGGRAPH), 26(3):13, 2007.

[14] Y. M. Kang and H. G. Cho. Bilayered approximate integration for rapid and
plausible animation of virtual cloth with realistic wrinkles. In Computer
Animation, IEEE Computer Society, pages 203–214, 2002.

[15] Yannick L. Kergosien, Hironobu Gotoda, and Tosiyasu L. Kunii. Bending
and creasing virtual paper. IEEE Comput. Graph. Appl., 14(1):40–48, 1994.

[16] Yong-Jin Liu, Kai Tang, and Ajay Joneja. Modeling dynamic developable
meshes by the hamilton principle. Comput. Aided Des., 39(9):719–731,
2007.

[17] Jörg Peters and Ulrich Reif. The simplest subdivision scheme for smoothing
polyhedra. ACM Trans. Gr., 16(4):420–431, 1997.

[18] X. Provot. Deformation constraints in a mass-spring model to describe
rigid cloth behavior. In Graphics Interface ’95, pages 147–154, 1995.

[19] X. Provot. Collision and self-collision handling in cloth model dedicated to
design garment. Graphics Interface, pages 177–89, 1997.

[20] O. Schenk and K. Gärtner. On fast factorization pivoting methods for
symmetric indefinite systems, 2006.

[21] K. D. Tsiknis. Better cloth through unbiased strain limiting and physics-
aware subdivision. Master’s thesis, University of British Columbia, 2006.

[22] P. Volino and N. Magnenat-Thalmann. Fast geometric wrinkles on ani-
mated surfaces. In 7th Intl. Conf. in Central Europe on Computer Graphics
and Visualization (WSCG), 1999.

[23] M. Wardetzky, M. Bergou, D. Harmon, D. Zorin, and E. Grinspun. Discrete
quadratic bending energies. Computer Aided Geometric Design, 2007.

20

