
CS 542G: Preliminaries, Floating-Point, Errors

Robert Bridson

September 9, 2009

1 Preliminaries

The course web-page is at: http://www.cs.ubc.ca/∼rbridson/courses/542g. Details on the

instructor, lectures, assignments and more will be available there. There is no assigned text book, as there

isn’t one available that approaches the material with this breadth and at this level, but for some of the

more basic topics you might try M. Heath’s “Scientific Computing: An Introductory Survey”. Sign up for

the google group if you want an online forum.

This course aims to provide a graduate-level overview of scientific computing: it counts for the

“breadth” requirement in our degrees, and should be excellent preparation for research and further stud-

ies involving scientific computing, whether for another subject (such as computer vision, graphics, statis-

tics, or data mining to name a few within the department, or in another department altogether) or in

scientific computing itself. While we will see many algorithms for many different problems, some histor-

ical and others of critical importance today, the focus will try to remain on the bigger picture: powerful

ways of analyzing and solving numerical problems, with an emphasis on common approaches that work

in many situations. Alongside a practical introduction to doing scientific computing, I hope to develop

your insight and intuition for the field.

2 Floating Point

Unfortunately, the natural starting place for virtual any scientific computing course is in some ways the

most tedious and frustrating part of the subject: floating point arithmetic. Some familiarity with floating

point is necessary for everything that follows, and the main message—that all our computations will

make somewhat predictable errors along the way—must be taken to heart, but we’ll try to get through it

1



to more fun stuff fairly quickly. There are also some interesting gotchas that can occur with floating-point

arithmetic, since it doesn’t behave exactly like exact arithmetic.

2.1 Representation

Scientific computing revolves around working with real numbers (occasionally complex!), which must be

appropriately represented and frequently approximated to be used on the computer. Several possibilities

other than floating point for this representation have been explored:

• Exact symbolic representation: symbolic computing packages such as Maple or Mathematica can

take a lazy approach to numbers, storing them as mathematical formulas until evaluation to a re-

quired precision is necessary. Low performance limits the applicability of this approach, though it

has clear benefits in terms of accuracy; how exactly evaluation happens usually relies on the next

representation...

• Arbitrary-precision arithmetic: here numbers are truncated at some point, e.g. 1/3 represented with

five decimal digits as 0.33333, but that point can be extended as far as might be needed to guarantee

an accurate answer. Dealing with such numbers requires non-fixed-size data structures as well as

branching logic, severely limiting performance, and for many problems it turns out this flexibility

isn’t needed. In some important special cases, the computations can be done with floating-point

hardware, interestingly enough, but the performance is still a big issue.

• Fixed-point arithmetic: at the other end of the spectrum, numbers can be represented as fixed-

size (say 32-bit) integers divided by some power of two. In a decimal version, this corresponds to

allowing numbers to have some pre-determined fixed number of digits before and after the decimal

point. This is wonderful from the point of view of making high performance hardware, but only

works for an application if it’s known ahead of time that all relevant numbers are going to be in

the desired range; this has relegated fixed-point to only a few small niches in areas such as Digital

Signal Processing, or programming very low-power devices like older mobile-phones.

None of these hit the same sweet spot as floating-point in terms of performance and flexibility, and are

not typically used in scientific computing.

Floating-point is similar in spirit to scientific notation of numbers, which you’ve almost certainly

seen in a science class: writing 1534.2 as 1.5342 × 103 for example, or in C/C++ short-hand 1.5342e3.

This represents a number as a mantissa, the sequence of significant digits which in this example is 1.5342,

multiplied by a base (10 here) raised to an exponent (3 here). This makes it easy to deal with both

2



extremely large and extremely small numbers, by changing the exponent (i.e. moving the decimal point—

so it “floats” instead of being fixed in place), and makes it clear what the relative precision is: how many

significant digits there are. More on this in a moment.

Floating-point uses a fixed size representation, usually with a binary format (so the mantissa’s sig-

nificant digits are instead significant bits, and the base for the exponent is 2). Most commonly either 32-bit

(“single precision”) or 64-bit (”double precision”) is used, although 80-bit is sometimes found (perhaps

even just internally in a processor), in the context of graphics smaller versions such as 16-bit (“half pre-

cision”) or 24-bit can appear, and some calculators and mainframes use a decimal form. Most floating

point hardware these days conforms to the IEEE standard (i.e. is “IEEE floating point”), which makes

precise requirements on the layout of the 32-bit and 64-bit versions along with the behaviour of standard

operations such as addition and a few additional options.

The fixed number of bits can be broken into three parts:

• one sign bit, indicating if the number is positive (0) or negative (1).

• some number of exponent bits: these encode the power to which the base of 2 is raised. Standard

32-bit floats use 8 bits, 64-bit uses 11.

• some number of mantissa bits: 24 bits for standard 32-bit, 53 for 64-bit. These form a binary repre-

sentation of a number usually between 1 and 2, with some exceptions.

If you add that up, you’ll see there appears to be one too many bits: this is because if the mantissa is

restricted to lie in the interval [1, 2), its first bit is always a 1, and thus that first bit needn’t be explicitly

stored—so the mantissa is actually stored with one bit less (23 for single precision, 52 for 64-bit). Such

floating point numbers, with this restriction on the mantissa, are called normalized.

Right now we can represent a huge range of numbers: for single precision, the smallest magnitude

numbers are on the order of ±2−127 ≈ ±10−38 and the biggest are on the order of ±2127 ≈ ±1038, and

with a great deal of precision in all ranges (the gap from one number to the next is about 2−23 ≈ 10−7

times the size of the number). However, you may have noticed that we are missing one very important

number: zero.

The requirement that the mantissa be between 1 and 2 precludes storing zero, which is obviously

ridiculous. The first special case added to floating point is thus denormalized numbers: ones with the

minimum possible exponent but a mantissa strictly less than 1, which includes zero. Zero aside, these

represent dangerous territory in terms of precision, since the number of significant bits (i.e. bits after the

first 1) is less than expected, but are so small that in usual practice they don’t show up.

3



Zero is an extra special case in fact, since there are two zeros: +0 and −0. The sign bit is still there

and can be tested, but positive and negative zero are deemed to be equal when tested. Negative zero

doesn’t usually occur, it should be noted, unless it would seem to be the natural limit of a sequence of

negative numbers.

There are some other special values in IEEE floating-point. Infinity (or “inf”) comes in both positive

and negative forms, providing the result for operations like 1/0. It interacts with the rest of the arithmetic

in predictable ways—for example, 1/inf = 0. Infinity also arises in an “overflow” situation, trying to

calculate a finite value that is too large to be represented by the floating-point system—there is also a

rarer “underflow” situation for a nonzero value too small in magnitude to be represented, but this is

more gracefully handled by denormalization.

Finally, there is the value of Not-a-Number, or “nan” for short. Nans are the result of ill-defined

operations, such as 0/0 or inf − inf . Any numeric operation with a nan returns another nan, allowing

one to trace back to where the problem occured in a program. More peculiarly, any comparison operation

with a nan returns false, including nan = nan: if using a language that doesn’t provide a test for nan-ness,

you can always check if x = x returns false.

The IEEE floating-point standard mandates good relative error: the answer you get should be equiv-

alent to taking the exact value (assuming the operands are exactly represented in floating-point) and

rounding it to the number of bits stored in the mantissa.1 Bounds on the relative error can be made pre-

cise with a quantity called machine epsilon, which is equal to the first bit not stored in the mantissa—or

more precisely, the largest number which when added to 1 still evaluates to 1 in floating-point arithmetic.

For single-precision floats machine epsilon is ε = 2−24 ≈ 6× 10−8 and for double-precision numbers ma-

chine epsilon is ε = 2−53 ≈ 1× 10−16. The relative error for any finite floating point operation is bounded

by machine epsilon. (And in particular, if the operation should exactly evaluate to zero, the floating-point

calculation will be zero.)

So far so good. However, this rounding of every operation has some serious consequences. The

most fundamental is that it’s not good enough to design algorithms which give the right answer assum-

ing arithmetic is exact: numerical algorithms have to be tolerant of errors to be useful. This gets into an

important notion called stability, which we will visit several times: if a small error early on in a com-

putation can unstably grow into a large error, the final answer can’t be trusted, since we know for sure

floating-point arithmetic makes errors all the time. We’ll discuss this more later.

1Rounding by default is to the nearest value, but you can also set other rounding modes, such as up or down, which is

extremely useful for efficiently implementing interval arithmetic for example.

4



While we do usually pretend that floating-point arithmetic behaves just like exact arithmetic, only

with some “fuzz”, the effect of rounding is a bit more subtle. For example, floating-point arithmetic

doesn’t obey some of the standard laws of regular arithmetic like associativity and distributivity: in

floating-point, the following usually are not true:

(x+ y) + z = x+ (y + z)

(x · y) · z = x · (y · z)

x · (y + z) = x · y + x · z

x/y = (1/y) · x

Sometimes aggressive compiler optimizations (hopefully not ones that are turned on unless specially

requested by the user, but some compilers don’t seem to care) will assume these to be true in reordering

expressions, which can have unintended consequences. What you think is being evaluated, based on the

source code you wrote, might not be what’s actually going on—in the worst case, you may at times need

to turn off optimization or carefully check the emitted assembly language.

Another tricky source of floating-point bugs is when the processor carries around greater precision

internally for operations; if a calculation is done fully in registers the result could be quite different than

if an intermediate result needs to be stored and then fetched from memory. It’s possible for the value

in a variable to change from one part of a function to another despite apparently (at the source code

level) being held constant, if at one point it’s still in a high-precision register and at another point it

has been rounded by being stored to memory. This means that from time to time the level of compiler

optimization and/or the presence of debugging “printf” statements can change how a program works,

making debugging a challenge. Thankfully these sorts of problems are very rare in most applications, but

it’s worth remembering that they do happen.

Another important point to make about errors is that the bound on relative error for a floating

point operation only applies to the operation itself, assuming the operands (the inputs) were exact. If

several operations are applied after another, so the input to one is the inexact output of another, the final

error can be much worse if care is not taken.

As a decimal example, consider a calculator that only stores four significant digits: (1+0.00001)−1

has the exact value of 0.00001 but evaluates to 0, giving a gigantic final relative error despite both the

addition and the subtraction being very accurate when considered on their own. If the calculation had

been reordered as (1− 1) + 0.00001, the exact answer with relative error of 0 would have been obtained.

One approach to robustly dealing with rounding errors (and generalizable to several more useful

situations—ask me for details if curious) is interval arithmetic. Here all computation is done with in-

5



tervals guaranteed to contain the actual value rather than a single approximate value. This is of course

slower, though IEEE floating-point hardware can be exploited to make some operations only twice as

slow. All the usual arithmetic operations can be defined on intervals, producing output intervals which

contain all possible output values based on the possible values in the input intervals. Interval arithmetic

is important in cases where it’s critical to have guarantees on the result of a calculation, but it’s not a

panacea: used naively it tends to produce intervals far too large to be useful. Special interval algorithms

are required to refine the results to be as sharp as possible. Most scientific computing calculations do not

use interval arithmetic as a result: with educated algorithm design, it’s not generally required.

3 Well-Posed Problems

Since errors are a fact of life with floating-point arithmetic—and for some problems arise in a variety of

other ways from measurement error to approximation errors—they need to be taken into account when

discussing problems and solutions.

The first concept we need is that of a well-posed problem: before we even think about algorithms

for solving a problem, or even touching a computer, we should check that the problem itself makes sense.

A problem is well-posed when:

• there is a solution

• the solution is unique

• the solution only changes a little when the data is changed a little

The importance of the first two points should be obvious, but the third one bears some discussion. Most

problems involve data of some sort: for example, if you’re trying to predict how fast an object will cool,

the data will include the shape and materials of the object along with the initial temperature distribution.

There is invariably going to be error associated with that data, say from imprecision in measurement.

If perturbing the data by amounts smaller than the expected measurement error causes the solution to

drastically change, there’s no way we can reliably solve the problem and it’s pointless to talk about algo-

rithms.

It should be immediately noted that scientists and engineers routinely tackle problems which are

not proven to be well-posed, albeit are strongly suspected to be. We also deal with problems which on

the face of it are definitely not well-posed—this is what so-called “chaos” is all about. This is handled by

rephrasing the problem in some averaged sense, but we won’t delve any further into that in this course.

6



Often the simplest statement of a problem is ill-posed, but a small change can be made to make it

well-posed without changing the actual intent. For example, the following linear system is ill-posed:

x+ y = 1

x+ y = 0

First of all, there is no solution—but even if we change the right hand side to permit a solution there would

be infinitely many of them. However, in this case it might be reasonable to change the strict equalities into

a search for a set of x and y which come as close as possible to satisfying both equations, and of all such

optimal x and y picking the smallest magnitude pair. This optimization approach to making ill-posed

problems sensible is extremely common, and arises in many different situations.

7


