
cs542g Final Exam
due December 22, 2009

This is a take-home exam. When you feel ready to take it, set aside three hours to write it, writing your solutions
to the six questions on paper. After the three hours are up, stop writing, and relay your solutions to me (either
scanned and emailed, or hardcopy in my mailbox or under my door or given to me in person).

This is open book in the following sense: before you start you can gather your notes, print-outs, books you may like,
or other materials. However, while you are writing (in particular, as soon as you have seen the questions) you are
not allowed to search out additional reference material—in particular, no help from the internet or other people.

If a question is unclear, do your best to state what puzzles you and what you will assume to proceed with writing
your answer.

Attempt all questions. Partial marks will be awarded for demonstrating understanding of the relevant material even
if you can’t fully solve the problem.
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1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Richardson iteration for solving an SPD system of equations Ax = b starts from any initial guess x0 and
constructs new guesses using a predetermined scalar parameter ω:

• Compute the current residual ri = b−Axi

• Update to get the next guess as xi+1 = xi + ωri

Of critical importance is choosing a good parameter ω. Work out a condition on ω that guarantees convergence to
the solution of the linear system. (Hint: look at how the residual ri+1 relates to the previous residual ri.) How fast
is the convergence in terms of properties of the matrix A?

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Propose an algorithm for efficiently approximating the condition number of a large, sparse SPD matrix A, assuming
that computing and storing the inverse (which is typically fully dense even if A is sparse) is far too expensive to be
possible.

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Show why Rayleigh Quotient Iteration is expected to have cubic convergence. In particular, assume the current guess
x at eigenvector u1 for eigenvalue λ1 is of the form

x = u1 + εu2

where u2 is an eigenvector for eigenvalue λ2 6= λ1 and |ε| < 1. Show the speed of convergence is independent of the
eigenvalues λ1 and λ2.

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derive an algorithm for computing the square root of a positive number y with just the regular arithmetic operations,
using Newton applied to

min
x

1
3
x3 − xy

Prove that it always converges if you start with x = y as the initial guess.

5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the n-body problem, in particular evaluating the potential of a cluster of n points at the origin. For
simplicity, assume the points all lie on the positive x-axis so we can ignore the other coordinates, and that all masses
are equal, so we are left with evaluating

n∑
i=1

1
xi

Further assume their centre of mass is at location D and the cluster has radius r, i.e. D − r ≤ xi ≤ D + r for all i.
The basic approximation is to use n/D.

Now consider two ways to improve the accuracy with a little more work. One would be to split the cluster into two
halves, which we will assume both have n/2 points and radius r/2. Another would be to include one more term in
the Taylor series expansions underlying the approximation. Compare the gain in accuracy and extra cost of each
approach.
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6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Take a simple 1D Poisson problem:

d2

dx2
u = f for 0 < x < 1

u(0) = a

u(1) = b

We can set up a discretization with grid points xi = i∆x for some spacing ∆x. Derive a one-sided finite difference
approximation to d2u/dx2 at xi from the Taylor series expansion of u(xi+1) and u(xi+2) around the point u(xi).

Will this finite difference method work for the problem? Hint: figure out the structure of the matrix—it’s definitely
not symmetric.
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