
CS 542G: Cholesky, Interpolation with Errors

Robert Bridson

September 29, 2008

1 Cholesky Factorization

1.1 SPD Matrices

Last time we started looking at a special (but very common, and very important) class of matrices: sym-

metric positive definite (SPD) matrices. Today we’ll see we can modify LU to run faster and better on this

class.

First, to recap: a matrix A is symmetric if it is equal to its transpose: A = AT , i.e. aij = aji. A

matrix is positive definite if xTAx > 0 for all nonzero vectors x. An SPD matrixA therefore enjoys several

additional properties:

• Just from symmetry, it has all real eigenvalues and a complete orthonormal set of eigenvectors. If x

is one of these eigenvectors (Ax = λx) then positive definiteness implies xTAx > 0, i.e. λ‖x‖2 > 0,

which means every eigenvalue is positive.

• Since all eigenvalues are positive, A is nonsingular.

• The 2-norm of A is its maximum eigenvalue. See below.

• Every diagonal entry of A is positive: if you form x as the vector of all zeros except for a 1 in entry

i, then xTAx is the i’th diagonal entry: xTAx = aii. Positive definiteness requires it be positive.

• Generalizing the positive diagonal entries, every principal submatrix of A is also SPD. That is, if

you pick a subset {i1, i2, . . . ik} of {1, . . . , n} and form the k×k submatrix B with rows and columns

induced by this subset, then B is SPD too. (Obviously it’s symmetric, and xTBx = yTAy > 0 where

y is x expanded with zeros for the entries not included in B.)

1



Properties like this make life much, much nicer than in the general matrix case, and provides for a wealth

of elegant and powerful algorithms.

1.1.1 The 2-Norm

Let’s take a closer look at one of those properties, the fact that ‖A‖2 is equal to the largest eigenvalue of

A. Recall the definition

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

We’ll directly figure out a vector x that maximizes this ratio. From symmetry, A has a complete set of

orthonormal eigenvectors: let’s call them v1, v2, . . . , vn. Any arbitrary vector x can be written as a linear

combination of them:

x = α1v1 + . . .+ αnvn

We’ll rewrite that as

x = V α

where V is an n× n matrix containing the eigenvectors as columns:

V =
(
v1 v2 · · · vn

)
(in class I used U instead of V , but I want to make sure there’s no confusion with the completely different U from

LU factorization), and α = (α1, . . . , αn) is the vector of coefficients. Note that V is in fact an orthogonal

matrix, since its columns are orthonormal: its transpose is its inverse, V TV = I , since V TV contains the

dot-products of each column with the other columns.

Let’s evaluate ‖x‖2 in terms of α:

‖x‖22 = ‖V α‖22
= (V α)T (V α)

= (αTV T )(V α)

= αT (V TV )α

= αTα

= ‖α‖22

Near the end we used the fact V TV = I . This is of course the classic result that multiplying by an

orthogonal matrix doesn’t change the 2-norm of a vector.

2



Note that

Ax = A(α1v1 + . . .+ αnvn)

= α1(Av1) + . . .+ αn(Avn)

= α1λ1v1 + . . .+ αnλnvn

Therefore ‖Ax‖22 = (α1λ1)2 + . . .+ (αnλn)2. Therefore, the 2-norm of the matrix is:

‖A‖22 = max
α 6=0

α2
1λ

2
1 + . . .+ α2

nλ
2
n

α2
1 + . . .+ α2

n

You can view the numerator as a weighted version of the sum of squares of α’s in the denominator, with

weights equal to the squared eigenvalues. Assume without loss of generality that the eigenvalues are in

increasing order, i.e. λn is the biggest. It should be fairly obvious that to maximize this ratio with respect

to the α’s, you should make αn nonzero and the rest zero—their weights are smaller. This gives:

‖A‖22 = λ2
n

Since A is SPD, so all its eigenvalues are positive, we know ‖A‖2 = λn. (For general symmetric matrices,

the same steps can be used to show ‖A‖2 is the largest absolute value of any eigenvalue.)

1.1.2 Building SPD Matrices

I’ve already asserted that SPD matrices are one of the most common and important classes of matrices,

but not justified why. We’ll see a real-world example next lecture, but for now I’ll stick to the general

principle from which virtually all examples arise.

Let B ∈ Rm×n be a matrix with full column rank, i.e. whose columns are all linearly independent.

(This implies that m ≥ n, so if B isn’t square it must be taller than it is wide.) Note that for any nonzero

vector x, this implies Bx 6= 0: otherwise x would tell us coefficients of a nonzero linear combination of

columns of B that is zero, which would mean they weren’t linearly independent. Therefore ‖Bx‖2 > 0,

and expanding this out gives:

‖Bx‖22 = (Bx)T (Bx)

= xT (BTB)x

This clearly shows that the matrix A = BTB is positive definite; it’s also clearly symmetric. This is the

usual recipe for SPD matrices, though it may take some digging to figure out what B is for a particular

example.

3



1.2 Cholesky

For triangular factorization, it turns out SPD means the Cholesky factorization exists:

A = LLT

where L is a lower triangular matrix. This is not the same L as in LU , since that L had all ones on the

diagonal and the Cholesky factor might not. Also note that LT is upper triangular, but again it’s not quite

the same as the U from LU . However, it can be shown there is a very close relationship that amounts to

rescaling rows or columns.

In the 1 × 1 case, Cholesky factorization is just the square root: if a > 0 then there is a number l

with a = l2. By convention we choose the positive square root, l =
√
a, and similarly for the full Cholesky

factorization we choose L to have positive diagonal entries.

For SPD matrices larger than 1×1 it’s not immediately obvious that the Cholesky factorization does

exist. We saw last time how for general matrices, LU might not exist and thus we turned to pivoting; we’ll

now show that in the SPD case LLT always exists without need for pivoting.

We can do this inductively or recursively using our block approach again, with the 1 × 1 case as

the base of induction/recursion. In particular, let’s write down (formally) the blocks as:(
A11 AT21

A21 A22

)
=

(
L11

L21 L22

)(
LT11 LT21

LT22

)

=

(
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

)

This gives us three matrix equations (well, four, but one is just the transpose of another):

• A11 = L11L
T
11, i.e. the Cholesky factorization of the principal submatrix A11. We know this is SPD

and of smaller dimension, therefore this should succeed.

• A21 = L21L
T
11, which resolves as L21 = A21L

−T
11 (using the superscript −T as a convenient abbrevi-

ation to indicate the inverse of the transpose). We already know L11 exists, and must be invertible

since A11 is. So we have no problems with this step.

• A22 = L21L
T
21 + L22L

T
22, or equivalently (A22 − L21L

T
21) = L22L

T
22.

The last step is the Cholesky factorization of the matrix A22 −L21L
T
21; however, while it’s clear that A22 is

SPD and L21L
T
21 is at least symmetric positive semi-definite, it’s not clear that their difference is SPD. (For

4



example, it’s easy to pick two positive numbers whose difference is negative, in general.) It’s obviously

symmetric, but to show that it is in fact positive definite, i.e. xT (A22 − L21L
T
21)x > 0 for x 6= 0, we need to

do some work.

One way of doing this is with the following partial inverse factor, F :

F =

(
L−1

11 0

−A21A
−1
11 I

)
This is designed so that:

FAF T =

(
I 0

0 A22 −A21A
−1AT21

)

=

(
I 0

0 A22 − L21L
T
21

)
Note that F is invertible, so if y 6= 0, then F T y 6= 0: this implies yT (FAF T )y = (F T y)TA(Fy) > 0, so

FAF T is SPD as well. If we take y = (0, x) for a given nonzero x, then

xT (A22 − L21L
T
21)x = yT (FAF T )y

> 0

Therefore the Cholesky factorization can proceed!

1.3 Advantages of Cholesky

Cholesky gets a few advantages over LU :

• Only one triangular factor needs to be calculated and stored, saving roughly a factor of two in

memory.

• The number of arithmetic operations is roughly half what LU requires, speeding it up by roughly a

factor of two.

• No pivoting is required, simplifying the code, allowing a wider range of algorithm variants, and

reducing unpredicatble memory access since no permutations take place. This further improves

performance.

The second one is the hardest to see: it’s a good exercise to derive, for example, the right-looking version

of Cholesky and estimate the number of arithmetic operations in each step compared to LU . Note in

particular that the rank-1 update need only be applied to the lower (or upper) triangle of A, since by

symmetry we can ignore one triangle of A (accessing aij when we need aji if necessary).

5



1.4 Stability of Cholesky

We saw above that the Cholesky factorization exists for every SPD matrix without need for pivoting, at

least in exact arithmetic. It turns out it also leads to wonderfully stable algorithms for solving SPD linear

systems. As a brief peek at the proof of this, we can estimate the condition number of the factor L in terms

of the condition of A.

Remember the Frobenius norm, which up to a small constant factor is equivalent to any other

standard matrix norm, and how it can be phrased using the trace:

‖L‖2F = tr(LLT )

In this case, LLT is A, and recalling the trace is always equal to the sum of the eigenvalues, we get:

‖L‖2F = λ1 + . . .+ λn

This can be bounded in terms of the largest eigenvalue λn of A: the sum is less than or equal to nλn. Also

remember that ‖A‖2 = λn. Therefore,

‖L‖2F ≤ n‖A‖2

or, taking the square root:

‖L‖F ≤
√
n‖A‖2

We can do almost exactly the same bound for L−1 using A−1 = L−TL−1:

‖L−1‖F ≤
√
n‖A−1‖2

Therefore, the condition number of the factor is bounded as follows:

κF (L) ≤ n
√
κ2(A)

In particular, solving Ax = b by doing forward and backwards substitution with L and LT should give

an answer accurate to within κ(L)2 which, with a small factor dependent on n, is proportional to κ(A).

Therefore we will get a reliable answer.

1.5 Extension to Symmetric Indefinite Problems

While Cholesky works beautifully for SPD matrices, it fails on symmetric indefinite matrices: at some

point it may need to take the square root of a negative number or divide by zero. (Obviously, as we’ve

seen, LLT is SPD, so it can’t work for a matrix that isn’t SPD.) In general, some form of numerical pivoting

6



is required to successfully factor a symmetric indefinite matrix. However, the forms of partial pivoting

and complete pivoting we saw earlier won’t help since they destroy matrix symmetry in general.

The first thought for dealing with these matrices is to introduce symmetric pivoting: if the entry

a11 is zero or too small, swap both row 1 and row i (for some i) and column 1 and column i. This brings

diagonal entry aii to the (1, 1) position. If we pick i to get the largest entry on the diagonal, we might be

able to proceed with factorization.

Unfortunately, as we saw with the RBF matrix, in some cases every entry on the diagonal may be

zero, but the matrix as whole is still invertible and even well-conditioned. Further tricks are required, the

most common one being to allow the use of 2× 2 block pivots.

More specifically, we look for an LDLT factorization, where L is unit lower triangular and D is

block diagonal—with diagonal blocks all 1×1 or 2×2. At each stage of factorization, the algorithm has to

decide if a 1× 1 pivot chosen from the diagonal will work, or if a 2× 2 block pivot is necessary. The 2× 2

blocks are treated with partial pivoting when they must be inverted. LAPACK uses a particular variant

called Bunch-Kaufman, which is analogous to partial pivoting in the LU case.

2 Interpolating with Error

We’ve now covered the basics of what we need for RBF interpolation; let’s go back and make the problem

more interesting and see where that takes us. In particular, so far we have assumed we need to interpolate

data points which were known exactly: there was some underlying smooth function (presumably) we are

trying to reconstruct, and we know its exact value at the sample points. It made sense to look for the

smoothest function possible which exactly goes through those data points.

However, it’s very typical for there to be errors made in measurement. It’s not always the case, but

quite often those errors are roughly uncorrelated: the error made in measuring at one sample point bears

no relation to the error made at another sample point—even one that’s very close to the first. Think of

each measured data value fi as the sum of the exact value f̂i and an error ei. While we will continue to

assume the exact function f̂(x) is smooth, the error is definitely not smooth; it’s not even continuous.

Trying to pass a smooth-as-possible function exactly through these non-smooth data points will

naturally result in a considerably wiggly, badly behaved interpolant, reflecting the nature of the error and

obscuring the smooth true function. Ideally we would through out the error term and interpolate the

exact function instead; we can’t do that, but it does make it clear that we needn’t reconstruct a function

which exactly goes through the measured data points.

7



Instead, we need to find a good trade-off between a smooth function which is not wiggly but also

closely approximates the data. We’ll tackle this next by restricting the space of possible approximating

functions to rule out wiggliness completely, and then search out the function from this space that comes

closest to the measured data.

8


