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1 More Variants of LU

Last time we saw a recursive divide-and-conquer version of LU alongside a traditional “right-looking”

algorithm (the natural analogue of classic row reduction). There are a few other variations that have been

singled out for naming in numerical linear algebra, such as the bordering scheme. For bordering we take

the same 2× 2 block partitioning:(
A11 A12

A21 A22

)
=

(
L11 0

L21 L22

)(
U11 U12

0 U22

)

but now we take A11 to be (n−1)× (n−1) and A22 to be 1×1. Algorithmically, this means after factoring

A11 as L11U11, we can compute the last row of L and last column of U as solutions of triangular systems:

UT
11L

T
21 = AT

21

L11U12 = A12

and finally the last entries in L and U :

L22 = 1

U22 = A22 − L21U21

There is also a left-looking scheme which computes a column of L and of U at each step, referring just to

previously computed columns (to the left), and an up-looking scheme which does the same with rows;

they both can be derived from slightly finer block partitions.

These other schemes often enjoy a performance advantage over the right-looking scheme, due

to more favourable memory traffic. However, performance for all the algorithms can be significantly

improved, and largely made identical, with block versions of LU . For example, the block right-looking
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scheme is based on a partition with A11 a k×k matrix for some small fixed k (usually chosen to reflect the

size of cache lines and/or L1 cache, determined after some experimentation). One step of the algorithm

proceeds as:

• Factor the k × k block A11 as L11U11 with any regular algorithm (storing L11 and U11 at least tem-

porarily in a contiguous k×k matrices, instead of scattered across memory as a part of A; this keeps

them in cache).

• Find the first k columns of L and k rows of U with block triangular solves:

UT
11L

T
21 = AT

21

L11U12 = A12

• Subtract from A22 the rank k matrix L21U12.

The last two steps can be done with optimized BLAS level 3 operations very efficiently.

As a final note, all of the algorithms we’ve discussed can be done more or less in-place. Since we

know the diagonal of L has to all be ones, it needn’t be stored explicitly, meaning the important entries

of L (below the diagonal) and U (above and including the diagonal) take up exactly the same amount of

space as the input A does. Moreover, once we’ve computed an entry in L or U , the entry of A in the same

location is no longer needed and thus can be overwritten instead. This is what standard implementations

do: destructively udpate A into a packed storage of L and U . Block versions of the algorithms may need

some extra “elbow room” to store temporary results efficiently (such as the LU factors of the leading k×k
submatrix in the block right-looking scheme) but this overhead is generally quite small.

1.1 Why?

As an aside, you may be questioning why we’re spending so much time on variations of the same

algorithm—that essentially amount to reordering loops without changing the final result. There are a

few reasons that I should make explicit.

The first is simply to provide a path from the row reduction you’re familiar with to practical algo-

rithms like a block version of right-looking LU .

The second goal is to provide an example of how scientific computing as a process works (as

opposed to simply picking out the current best recipes). Row reduction works, but by bringing in a

higher level abstraction of this nuts-and-bolts algorithm—reinterpreting it as a matrix factorization—we
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can get a number of advantages. This is a common theme in the course and the history of the subject, and

a model for what you might do when tackling a hard problem further on in your career.

Finally, numerical linear algebra is almost always the core of scientific computing, and so it’s worth

the effort to get up to speed on common terminology, different ways of approaching the same basic prob-

lem (blocking is always a big deal for performance; the difference between, say, left-looking and right-

looking approaches is far larger when dealing with sparse matrices.), and in general gaining familiarity

with core linear algebra operations.

2 Numerical Pivoting

Our algorithms so far have a serious flaw: some perfectly well conditioned matrices don’t have an LU

factorization. For example:

A =

(
0 1

1 0

)
has condition number κ(A) equal to one, the best it can possibly be (it’s just a permutation of the identity

matrix). However, if given to any of the algorithms discussed so far, we would immediately hit a divide-

by-zero in computing L21, giving inf.

Even if the LU factorization exists in exact arithmetic, it may be numerically useless:

A =

(
10−16 1

1 0

)

is very nearly perfectly conditioned, but it’s LU factorization is terrible:

A =

(
1

1016 1

)(
10−16 1

−1016

)

The condition number of each of these is on the order of 1032, making them useless in terms of solving a

linear system with A. The problem was that we had to divide by the diagonal entry 10−16, which is much

smaller than other entries in the matrix, leading to a massive blow-up.

The classic row reduction strategy for dealing with a zero coefficient on the diagonal is to reorder

the remaining equations, picking one with a nonzero coefficient (there must be one if the matrix is non-

singular). We can do the same here, which amounts to swapping the first row of A with another which

has a nonzero first entry, and of course making a record of this swap to apply to the right-hand-side of a

linear system we want to solve with the LU factors. We can also swap the first column of A with another
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column which has a nonzero first entry; this amounts to reordering the variables in the equations. Again,

we need to record such a swap to be able to undo it after solving with the resulting LU factors, and thus

return the solution vector to the user in the order they were expecting.

Note that for efficiency, practical implementations don’t really swap rows or columns of A with

actual memory copies, but rather keep an auxiliary integer array or two with the current remapping

of the rows or columns (initially set to [0, 1, 2, 3, . . . , n − 1] but updated by swapping two entries when

needed) that can be used to indirectly look things up as if the matrix had been reordered.

This process is called pivoting, or more fully numerical pivoting (since it depends on the numer-

ical values of the entries). It’s most clearly implemented in the context of the right-looking algorithm,

which we will assume for now. In an effort to avoid dividing by small numbers (potentially causing a

huge growth in the size of entries in the matrix, as seen above) pivoting determines swaps that put a large

entry in the top-left position in the matrix.

Complete pivoting (or full pivoting) does this by finding the largest magnitude entry in the entire

matrix and swapping its row and column with the first to get it in the (1, 1) position (this entry is then

called the next “pivot”). Clearly, if the matrix is nonsingular, this entry has to be nonzero and thus the

right-looking factorization can proceed. It should also be clear from the right-looking formulas that U11

will be the largest entry in the first row of U (more generally, the largest entry in every row of U will be

on the diagonal) and similarly L11 = 1 will be the largest entry in the first column of L (more generally,

all entries in L are bounded by 1 in magnitude). With a little more effort it can be shown that U can’t

be too much larger than A in terms of norm, and most importantly that together L and U can’t be too

much worse conditioned than A, meaning complete pivoting is a stable algorithm that can be trusted

to deliver accurate solutions to linear systems. Unfortunately, complete pivoting is usually deemed too

expensive. The problem is that searching for the next pivot requires O(n2) operations, the same as the

rank one update, increasing run-time by a substantial factor.

(As an aside: the fact that L is unit lower triangular with all entries bounded by one doesn’t imply

it’s well-conditioned as I mistakenly claimed in class. You might find it an interesting exercise to find such

an L that, in the n× n case, has condition number κ(L) ∈ O(2n).)

Partial pivoting is much more commonly used. Here only the first column of A is searched for the

entry of largest magnitude, and the rows are appropriately swapped to bring this one to (1, 1). Columns

are never permuted in partial pivoting. This means L has all its entries bounded by 1, as before, but

U might be worse behaved. In fact, it’s possible to construct a well-conditioned matrix A where U has

exponentially increasing entries, resulting in an unusably bad factorization. However, it appears that such

matrices simply don’t arise in real applications even though the exact reasons for this remain mysterious.
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Decades of experience suggest that LU with partial pivoting is reliable for all real-world matrices. Since

the search for the pivot only takes O(n) time per step, it’s much more efficient than complete pivoting,

and has the added advantage that other variations of LU such as the left-looking algorithm can be used

(complete pivoting requires a right-looking approach).

3 LAPACK

This leads us to the next significant standard scientific computing library, LAPACK (short for Linear

Algebra Package), with code and documentation available at www.netlib.org/lapack. Unlike the

BLAS, this is more than an API but a full library; there basically is only one implementation. It provides

efficient and robust (very well tested!) routines for solving linear systems with LU factorization, along

with many other useful operations such as solving eigenvalue problems.

It derives its efficiency mostly by implementing algorithms in a block fashion, as we saw earlier,

and using calls to BLAS (wherever possible at level 3) to exploit all the machine-specific optimization that

has been done for the BLAS. This means LAPACK doesn’t need tuning or reoptimizing on each platform:

one code base works well for everyone.

LAPACK, in the case of LU factorization, also includes the capability of estimating the condition

number of A after factorization. Recall κ(A) = ‖A‖‖A−1‖, and that the matrix 1-norm ‖A‖1, for example,

is easy enough to compute; it’s the norm of the inverse ‖A−1‖ that’s tricky. However, with the definition

‖A−1‖1 = max
‖x‖1=1

‖A−1x‖1

in mind, it turns out to be feasible to relatively efficiently find a unit-norm vector x which usually comes

close to maximizing this quantity, making use of solves with L and U to apply A−1 to candidate vectors.

(Look up N. Higham’s paper “FORTRAN Codes for Estimating the One-Norm of a Real or Complex

Matrix, with Applications to Condition Estimation”, ACM TOMS, 14(4), 1988 for more on how LAPACK

does this.)

As with the BLAS, if you need to do an operation covered by LAPACK, it’s almost never a good

idea to write your own version; despite the FORTRAN calling conventions and the hassle of linking

against the right libraries, it will probably be a lot easier than getting your own robust and reasonably fast

version working.
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4 Specializing LU

Finally, we’ll take a peek at some special classes of matrices A for which the LU factorization is simplified

and possibly sped up significantly.

The most common case is when A is synmmetric: A = AT . This includes the RBF system, for

example, and maybe even the majority of matrices that arise in the real world. The goal is that somehow

LU can be modified to exploit that symmetry, speeding things up by a factor of two. Specializing further,

the important class of symmetric positive definite matrices (abbreviated SPD) in particular leads to an

especially efficient and elegant version of LU .

A matrix being positive definite is usually defined as the following property:

xTAx ≥ 0 for any vector x

xTAx = 0 only if x = 0

For a symmetric matrix, this is also equivalent to requiring all the eigenvalues are positive (recall that the

eigenvalues of a symmetric matrix have to be real, but in general could be of any sign).

Similarly you can define negative definite with the inequality the other way: A is negative definite

if and only if −A is positive definite.

Positive or negative semidefinite matrices relax the second condition, allowing xTAx = 0 for

nonzero x.

Finally, if a matrix isn’t definite or semidefinite, it is termed indefinite: for some vectors x the

product xTAx > 0 but for others xTAx < 0. It’s relatively easy to determine that the symmetric matrices

we’ve seen so far (for RBFs and the 2× 2 examples seen above) are indefinite; this makes them harder to

solve, and so next we’ll concentrate instead on the easier symmetric positive definite case.
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