
CS 542G: Robustifying Newton, Constraints, Nonlinear Least

Squares

Robert Bridson

October 29, 2008

1 Hessian Problems in Newton

Last time we fixed one of plain Newton’s problems by introducing line search along the Newton direction.

However, we are still left with the problem of bad Hessians, for example when H is singular and the

linear equations H∆x = −∇f have no solution. In fact, even if H is nonsingular, if it has any negative

eigenvalues we could be in trouble.

Line search may fail unless the direction d is a descent direction: that is, the directional derivative

of f along d is negative, so that we know we can make some progress towards a minimum for α small

enough. The direction derivative along d is:

∂f

∂d
= ∇fTd

Obviously, unless we’re at a local min (so ∇f = 0) the Steepest Descent direction d = −∇f must make

this negative. However, if we plug in the Newton direction d = −H−1∇f we get:

∂f

∂d
= −∇fTH−1∇f

If H (and hence H−1) has a negative eigenvalue, then if ∇f happens to be its eigenvector we find the

Newton direction has a positive directional derivative, so line search may well fail.

Therefore we really prefer for H to be SPD, which also makes minimizing the model objective

function well-posed. If we evaluate the Hessian and it’s not SPD, we should modify the H to make it

SPD—with the conviction that we must necessarily be far from Newton converging so the Newton step

isn’t optimal anyhow, and our primary goal is instead to make sure we get a descent direction for line

search.

1



One way to force H to be SPD is to attempt to run Cholesky factorization for use in solving the

Newton linear system. If Cholesky succeeds, H already was SPD and we’re happy. Otherwise when we

hit a zero or negative pivot we can simply replace it with a positive value of our choice; this gives us

a matrix LLT which is SPD but will no longer equal the Hessian—but in some sense is only minimally

perturbed from it. This approach is often called modified Cholesky.

Another more common approach to making Newton robust, which doesn’t rely on any particular

method for solving the linear system (as modified Cholesky obviously does), is simply to add a multiple

of the identity matrix to H :

H + µI

As long as µ > 0 is larger in magnitude than the biggest non-positive eigenvalue of H , this must be SPD.

Since we don’t expect to know what that is we can simply guess a value (somewhere between 0 and ‖H‖),
adjusting it up if we hit a problem solving with H or don’t get a descent direction. (And of course we

should always give µ = 0 a try to get back to plain Newton at convergence.)

Note that the Steepest Descent direction is the solution of Id = −∇f , compared to Newton using

the solution of Hd = −∇f , and thus we can interpret this latest method (H + µI)d = −∇f as a blend

between the two.

We can also interpret this as a modification of the model objective function, a regularization of the

Taylor series to make minimization well-posed. Instead of minimizing

min
∆x

f(x(k)) +∇f(x(k))∆x+
1
2

∆xTH(x(k))∆x

we are now minimizing

min
∆x

f(x(k)) +∇f(x(k))∆x+
1
2

∆xTH(x(k))∆x+
µ

2
‖∆x‖22

i.e. including a regularization term as discussed earlier to make the problem well-posed.

2 Trust-Region Methods

We’ve just seen an approach to making methods like Newton robust based around line search, with ad-

ditional effort expended to force the search direction to be a descent direction. The Trust Region (TR)

approach to robustifying is quite different.

The idea behind TR methods is that the Taylor polynomial, i.e. the model objective function, must

be a good enough approximation to f in some bounded neighbourhood that minimizing it there will be a

2



good idea. Instead of adding a line search and altering the search direction to make Newton more robust,

the TR approach instead adds a constraint that ∆x not be too large—it can only be taken from the region

where we trust the model objective function is a good approximation to f . The sub-problem we solve

every iteration is then:

min
x:‖x‖≤D

f(x(k)) +∇f(x(k))∆x+
1
2

∆xTH(x(k))∆x

Here D is the trust region radius, which we also have to estimate as we go. It plays a role similar to

the step size α in a line search method. If the solution ∆x to the problem doesn’t lead to a reduction in

f(x(k) + ∆x) relative to f(x(k)) then D was obviously too large and we can try it again with D reduced;

if the solution does give a redution, we can try increasing D in the next iteration. Near convergence, the

limit D should stop playing a role (i.e. ‖∆x‖ < D naturally) and plain Newton is recovered.

3 Constrained Optimization

3.1 Equality Constraints

The TR method involved solving a sub-problem with a constraint on the variable, a topic we haven’t

broached so far. Let’s first take a look at a special case, which is somewhat easier, where constraints are

expressed as equalities:

min
x:g(x)=0

f(x)

We’ve introduced a constraint function g(x), where the only values we consider are those where g(x) = 0.

The approach you probably saw in calculus to dealing with constraints like this is to introduce

Lagrange multipliers. At a local minimum subject to the constraint, the derivative of f in directions

tangential to the constraint must be zero, but it might not be zero in directions orthogonal to the constraint.

In other words,∇f must be orthogonal to the constraint if it’s not zero. The gradient∇g is also orthogonal,

and so the two gradients must be proportional to each other; the Lagrange multiplier λwill be the constant

of proportionality. In summary, the following is satisfied at the minimum:

g(x) = 0

∇f(x) = ∇g(x)λ

This generalizes to include multiple constraints (i.e. with g vector-valued), with the same number of

components in λ.

It’s fairly natural to extend the Newton approach of replacing a general function with a simpler

3



polyonmial model here: for example, in an iteration replacing the condition g(x) = 0 with the lineariza-

tion g(x(k)) +∇g(x(k))∆x = 0. This results in a linear system for ∆x and λ.

A somewhat different approach to constraints is to use penalties. If we introduce a penalty func-

tion

G(x) =

{
0 : g(x) = 0

∞ : g(x) 6= 0

then clearly the unconstrained problem minx f(x)+G(x) is equivalent to the original constrained problem.

However, this objective is very badly behaved and not amenable to solution directly (since it’s not even

continuous). Instead, we introduce a parameterized family of softer penalty functions,Gε(x), each smooth

but converging to the hard penalty G(x) as ε→ 0. For example, we could take

Gε(x) =
1
ε
g(x)2

or something similar. Then, during an iterative method to solve the unconstrained problem minx f(x) +

Gε(x) we steadily slide ε down towards zero, forcing the unconstrained method to respect the constraint

in the limit. Despite the attractiveness of this approach’s simplicity, there should obviously be some

concern for ill-conditioned matrices appearing as ε→ 0.

3.2 Inequality Constraints

Inequality constrainted problems, of the form

min
x:g(x)≤0

f(x),

raise a number of additional complications. If we know the answer, the minimum, actually satisfies

g(x) < 0, then the constraint is “inactive” there: that x is also a local minimum for the unconstrained

problem minx f(x). On the other hand, if the answer satisfies g(x) = 0, then the constraint is “active”,

and x is also a local minimum for the equality constrained problem minx:g(x)=0 f(x). In some sense, the

inequality adds an extra combinatorial aspect to the problem, determining if a constraint is active or not. If

there are k inequality constraints, all 2k active/inactive combinations could be tried, but that’s obviously

inefficient; the challenge of inequality constrained optimization is to avoid that exponential cost.

The two same approaches from above can be applied here too. With Lagrange multipliers, the

question of active/inactive boils down to deciding if a λ should be nonzero (active) or zero (inactive); a

bit more analysis or geometric intuition1 can show there is an extra condition λ ≤ 0 that goes alongside
1If the solution to the inequality constrained problem lies on the boundary g(x) = 0, then f must be increasing as you go

inside the region g(x) < 0, which means∇f points inwards. On the other hand,∇g points outwards from the region, so the two

gradients must be opposite each other.

4



g(x) ≤ 0, with at least one of λ or g(x) needing to be zero. For penalty methods, the penalty functions

have to be designed a little differently so they are zero (at least in the limit) when g(x) ≤ 0.

3.3 The Trust Region Newton Problem

Let’s take a look now at the trust region sub-problem we encountered above:

min
x:‖x‖2−D2≤0

f(x(k)) +∇f(x(k))∆x+
1
2

∆xTH(x(k))∆x

We’ve manipulated the inequality constraint to get rid of the square root in the 2-norm and put it in ≤ 0

form (so our constraint function is g(x) = ‖x‖2 − D2). At a local minimum for this problem, there is a

Lagrange multiplier λ ≤ 0 where

∇f(x(k)) +H(x(k))∆x = λ2∆x

In other words, there is a µ ≥ 0 (with µ = −1
2λ) so that

H∆x+ µ∆x = −∇f

⇔ (H + µI)∆x = −∇f

We’re back at the same regularized linear system we saw before! (This can also be derived with a penalty

method.) The only difference this time is the strategy for picking µ: it’s chosen essentially so that no line

search is needed, i.e. the update x(k+1) = x(k) + ∆x is an improvement.

4 Nonlinear Least Squares

An important class of optimization problems is nonlinear least squares, a generalization of the linear

least squares we saw earlier. As before, we have a set of n data points (labeled {bi}ni=1 for this section)

which we want to fit a parameterized function to: fi(x) ≈ bi. Here we’ve changed notation significantly,

so that x is a vector of the k parameters: in the linear case earlier we called it α, the coefficients of the

linear combination of basis functions, but now we’re not assuming f depends linearly on its parameters.

We still define the residual vector ri = bi − fi(x) and seek to minimize its 2-norm ‖r(x)‖, but this is no

longer a simple quadratic in x so the linear algebra solution we derived doesn’t apply.

We can of course treat minx ‖r(x)‖2 as a generic optimization problem and try out any of the strate-

gies discussed above. However, there is more “structure” known about this problem that we can gainfully

exploit. Furthermore, if we did happen to have a linear least squares problem (so r(x) = b−Ax for some

constant rectangular matrix A) then a method like Newton would end up being equivalent to solving the

normal equations—which we know can be problematic when A is ill-conditioned.

5



4.1 Gauss-Newton

This leads us to the Gauss-Newton algorithm. Just like Newton’s method replaces the general objec-

tive function with a simpler model using Taylor series, one step of Gauss-Newton replaces the general

nonlinear f(x) with a model linear function (the first two terms of the Taylor series):

f(x(k) + ∆x) ≈ f(x(k)) + J(x(k))∆x

Here J is the Jacobian, a rectangular n× k matrix with all the first partial derivatives of f :

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xk

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xk

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xk


This leads to a model linear residual r(x(k) + ∆x) ≈ b − f(x(k)) − J∆x, which we can now minimize in

the least squares sense to get the next guess. This is now a regular linear least squares problem:

min
∆x

∥∥∥(b− f(x(k))
)
− J∆x

∥∥∥2

We can solve this with an appropriate technique, such as QR factorization of J , and then update x(k+1) =

x(k) + ∆x.

Note that this does fit the bill as a method which, when given a truly linear least squares problem,

does allow the usual least squares methods. Furthermore, we can expect very good convergence if f(x)

is “close” to linear.

6



4.2 Connection to Newton

It’s instructive to make a comparison between Gauss-Newton and regular Newton. The Newton system

is based partly on the gradient of the objective ‖r(x)‖2:

(∇‖r(x)‖2)i =
∂‖r(x)‖2

∂xi

=
k∑
s=1

2rs(x)
∂rs(x)
∂xi

=
k∑
s=1

2 (bs − fs(x))
(
−∂fs(x)

∂xi

)

=
k∑
s=1

2 (bs − fs(x)) (−Jsi(x))

= 2
[
−J(x)T (b− f(x))

]
i

and also on the Hessian:

Hij(x) =
∂2‖r(x)‖2

∂xi∂xj

=
∂

∂xj

(
k∑
s=1

2 (bs − fs(x))
(
−∂fs(x)

∂xi

))

=
k∑
s=1

−2
fs(x)
xj

(
−∂fs(x)

∂xi

)
+

k∑
s=1

2 (bs − fs(x))
(
−∂

2fs(x)
∂xi∂xj

)
= 2(JTJ)ij − 2r ·H

where H is the Hessian of f (technically a rank three tensor, not a matrix any more). The Newton linear

system simplifies to:

(JTJ − r ·H)∆x = JT (b− f(x(k)))

Note this only differs from the normal equations JTJ∆x = JT (b − f(x(k))) for Gauss-Newton by an

additional term −r ·H in the matrix which contains the second derivatives of f .

We can thus expect that Gauss-Newton will have good convergence properties like Newton, though

unless the second derivatives of f are zero (i.e. f is linear) or the residual is zero at the final solution the

convergence rate isn’t quite as good. However, unlike Newton, there’s never a danger of a negative eigen-

value spoiling the chances of a descent direction in Gauss-Newton: JTJ has to be positive semi-definite.

Also note that Gauss-Newton makes a pretty good approximation to Newton despite not involv-

ing any second derivatives. This can be an important benefit, since apart from the very special case of

7



polynomials, taking a derivative is generally both expensive and numerically worrisome (derivatives are

generally not as smooth as the original function, with higher derivatives even worse). Next time we’ll

look at a more general class called Quasi-Newton methods which approximate Newton without need for

second derivatives.

4.3 Making Gauss-Newton Robust

Far from convergence, Gauss-Newton makes no guarantee that the step with ∆x will actually lead to an

improvement. Just like Newton, we can make the method more robust with a few extra tweaks.

The first path we’ll consider is adding line search: find a step size α so that x(k) + α∆x leads to a

good enough reduction in ‖r‖2. We also might run into issues where J is (nearly) rank-deficient, which

might lead to troubles in solving the linear least squares problem; we can fix that by regularizing the

model problem as before, minimizing

min
∆x

∥∥∥(b− f(x(k))
)
− J∆x

∥∥∥2
+ µ‖∆x‖2

The normal equations for this problem end up with a matrix JTJ + µI , which shouldn’t be a surprise.

The parameter µ ≥ 0 should be adjusted up if the regular Gauss-Newton step is intractable.

The other path is to turn Gauss-Newton into a trust region method. This can be boiled down to

the celebrated Levenberg-Marquardt algorithm, which unsurprisingly features almost the same linear

system (if solved with the normal equations). I’ll leave the details for you to look up if you end up facing

nonlinear least squares problems down the road.

8


