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1 Understanding Steepest Descent

Last time we finished with a basic Steepest Descent algorithm using backtracking line search and a basic

convergence test. This is a solid, reliable algorithm that is expected to converge to a local minimum at

least for any well-posed convex problem, and probably many more general cases too, though proving

that isn’t trivial.

However, it would serve us very well to take a closer look at analyzing how fast SD might be, and

what factors might slow it down. We won’t do this too rigourously, but will try to do it in a way that

exposes both intuition for what’s going on and more importantly demonstrates the general process of

taking a reasonable-looking algorithm for a hard problem and trying to evaluate and/or improve it. This

process is absolutely critical to scientific computing and its applications.

1.1 Model Problems

The first step, generally, is to replace the hard problem (minimizing a general function f ) with a model

problem: something simpler to understand and work with analytically which nevertheless captures at

least some of the essence of the original hard problem. We did this before when talking about interpola-

tion, trying out a 1D version of the general high dimension problem first. It’s always a good idea.

In this case, we’ll use Taylor series to replace the general f with something easier: a polynomial.

The simplest polynomial which can have a well-defined minimum is a quadratic, so that’s where we’ll

stop the series:

f(x+ ∆x) ≈ f(x) +∇f(x)∆x+
1
2

∆xTH(x)∆x+O(∆x3)

To understand convergence, obviously we should expand the Taylor series around a point x which is a
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minimum of f , which means∇f(x) = 0. We can also subtract off the value f(x) at the minimum without

changing the problem, and translate our coordinate system so the minimum is in fact at x = 0. This leaves

us with the following model problem, after relabeling ∆x to x:

min
x

1
2
xTHx

where H is a symmetric matrix representing the Hessian of f at a minimum. Note that the gradient of

this model function is just Hx.

Of course, H can’t be any old symmetric matrix: it can be proven that the Hessian of a smooth

function at a local minimum must be symmetric positive semi-definite (if there were negative eigenvalues,

a perturbation in those eigenvector directions would find even smaller values of f than the local minimum

which is impossible). In fact, if we want our model problem to be well-posed, we have to strengthen this

to SPD—ruling out zero eigenvalues. However, we need to keep in mind that a real-world f may be both

well-posed and have a singular Hessian at the minimum, so we’ll be particularly interested in how SD

copes with an ill-conditioned H .

The next difficulty we face is that the line search methods we discussed aren’t easy to boil down to

a simple formula: they involved loops with logic tests etc. Instead we’ll model this as well by assuming

a “perfect” line search, that exactly minimizes the objective along the search direction—which isn’t too

hard at all for the quadratic we have. We need to find step size α minimizing:

1
2

(x+ αd)TH(x+ αd)

Expanding this out and setting the derivative with respect to α eqal to zero gives:

∂

∂α

[
1
2
xTHx+ αdTHx+

1
2
α2dTHd

]
= 0

dTHx+ αdTHd = 0

α = −d
THx

dTHd

Putting this together with the gradient above, our Steepest Descent model looks like this:

• Start with initial guess x(0).

• For k = 0, 1, . . .

• Pick d = −Hx(k), α = −dT Hx
dT Hd

• Update x(k+1) = x(k) + αd

The question to answer is how fast this converges to x = 0.
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We can actually simplify our model a bit further, without loss of generality assuming we’ve rotated

coordinates along eigenvectors, diagonalizing H . In particular, let’s assume H = diag(λ1, . . . , λn), with

λ1 ≥ λ2 ≥ . . . ≥ λn > 0. In this case the i’th entry of the update boils down to:

xnew
i ← xi −

∑n
j=1 λ

2
jx

2
j∑n

j=1 λ
3
jx

2
j

λixi

We can get a feel for what’s going on by ignoring the possible variations in the components of x: then all

components of x are reduced, but the component for the biggest eigenvalue will be reduced λ1/λn more

than the component for the smallest eigenvalue. With some more effort that we won’t go through, it can

eventually be proven that error will (worst case) be reduced linearly at a rate bounded by

1− λn

λ1
= 1− 1

κ(A)

That is, SD slows down according to how ill-conditioned the Hessian matrix is, with the components in

the smallest eigenvalue spaces converging slowest. If the condition number is huge, those components

will converge very slowly indeed.

Some further investigation, for example experimenting with normalizing x after each SD step

above, shows that as x converges to zero, in the limit the components corresponding to λ1 and λn domi-

nate all others and are in the ratio λn : λ1. Try plugging in x = (sλn, 0, . . . , 0,±sλ1) to the update above to

see how this is a fixed point (up to a reduction of s) of the iteration. This means that even the convergence

of the component of the largest eigenvalue eventually is stalled by the effect of the smallest eigenvalue.

Initially, of course, the large eigenvalue components converge very nicely—the steepest descent direc-

tion −Hx clearly responds best to errors in those components, and most weakly to the small eigenvalue

components.

The summary of all this is that Steepest Descent is reliable—and can make fast progress initially—

but is slow to finish converging when the Hessian is ill-conditioned.

2 Newton’s Method

In the model problem above we could see the convergence problems are related to the fact that the op-

timal direction to the minimum at zero is −x, but the steepest descent direction is instead −Hx which

unfortunately scales down the small eigenvalue components. In a real problem we of course don’t know

the exact direction to the true minimum (we don’t have direct access to “x”)—but we can evaluate the

Hessian and then form −H−1∇f which reduces to −x in the model problem. This is the heart of New-

ton’s method: picking a smart direction by using the Hessian. This puts it in the third category of solvers,

where we assume we do have access to the second derivatives of the objective function f .
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Let’s derive Newton more formally. We’ll take the same approach as we did for analyzing SD,

modeling the objective using a quadratic polynomial from the Taylor series, but we’ll build the method

out of this model. That is, since minimizing a general objective f(x) is hard, we’ll temporarily replace

f(x) with a model objective function which is just quadratic (approximating f(x) with a Taylor series)

and easier to minimize. With guess x(k) in Newton, the new model function is:

f(x(k) + ∆x) ≈ f(x(k)) +∇f(x(k))∆x+
1
2

∆xTH(x(k))∆x

and we want to find a ∆x that minimizes it, giving the next Newton guess x(k+1) = x(k) + ∆x.

Setting the derivative w.r.t. ∆x of the model objective to zero gives:

∇f(x(k)) +H(x(k))∆x = 0

⇔ H(x(k))∆x = −∇f(x(k)

We thus have a symmetric linear system to solve for ∆x, with formal solution ∆x = H−1∇f .

This, then, is the plain Newton algorithm:

• Start with guess x(0)

• For k = 0, 1, 2, . . . until convergence

• Evaluate ∇f(x(k) and H(x(k)

• Solve the linear system H∆x = −∇f
• Update x(k+1) = x(k) + ∆x

Once this starts to converge, it converges extremely efficiently: the O(∆x3) error in our model function

means the Newton guess is extremely accurate, and we get quadratic convergence. That is, for k large

enough and for some constant C, the error satisfies

‖ek+1‖ ≤ C‖ek‖2

This is not quite as fast as the cubic convergence we saw with Rayleigh Quotient Iteration, but it still

means we can expect to get double the number of accurate digits each iteration in the convergence

regime—which for double precision means we’ll be finished in 3–5 iterations.

The main problem with Newton, however, is that getting to the point of convergence is not at all

guaranteed. Unlike Steepest Descent, there is no guarantee we’ll make any improvement, and in fact a

Newton step far from the minimum might take us even further away. There’s also the issue that the linear

system might not even be well-posed: H could be singular. All this means we have to do some work

making Newton more robust before we can use it as a general-purpose method.
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We’ll skip over the question of a bad H for now, and assume the H we get is in fact SPD (so

minimizing the model objective is well-posed); we’ll return to this next lecture. The other problem is that

far from convergence, there’s no guarantee that x(k+1) is going to be closer to the solution than x(k); even

in 1D it’s simple to construct an example where it’s drastically further away.

We can significantly improve the reliability of Newton by instead thinking of the solution ∆x as a

suggested search direction, with α = 1 the natural step size, and then use that to start off line search. In

the convergence regime, line search will return immediately because α = 1 will make an improvement;

far away, α will be reduced until we do get an improvement.
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