
CS 542G: The Symmetric Eigenproblem

Robert Bridson

October 15, 2008

1 The Symmetric Eigenproblem

Last time we saw there were strong connections between the SVD and finding the eigenvectors and eigen-

values of symmetric matrices (such asATA,AAT , or a larger matrix withA andAT as off-diagonal blocks).

Finding eigenvalues and eigenvectors of symmetric matrices is important in many problems on its own

right; for example, in acoustics, vibration analysis, and related engineering subjects.

For a symmetric real matrix A, we know all eigenvalues are real and that there is a complete or-

thonormal basis of eigenvectors. However, for general unsymmetric matrices, life is nowhere near as

simple: there may be complex eigenvalues, the eigenvectors may not be orthogonal, and there might not

even be a full basis of eigenvectors. The algorithms for this case (and how to define a well-posed numer-

ical problem around it) are rather more complicated as a result—thus we will skip over this problem and

focus only on the symmetric case.

The classic derivation of the eigenvalues poses them as roots of the characteristic polynomial

det(A−λI) of the matrix; solving the eigenproblem is in some sense equivalent to solving polynomials—

at least in exact arithmetic. We haven’t discussed how to compute a determinant effectively, but we did

see that high degree polynomials can be very badly behaved numerically and are probably best to avoid.

Therefore we’ll tackle the eigenproblem from a different direction.

However, the link to polynomials does illustrate one important point: finding eigenvalues can’t be

as straightforward as, say, solving linear systems. For the 2×2 case there is a simple enough exact formula,

based on solving a quadratic, which only involves taking a square-root; for the 3 × 3 case there is still a

cubic formula involving cube roots as well, but it’s rather more complex, and the 4×4 case is still tractable

but pretty nasty. However, for fifth degree and higher polynomials, there is no possible formula for the

roots that just involves regular arithmetic and radicals (square roots, cube roots, etc.): Abel proved this

1



back in the 19th century. This isn’t to say exact formulas aren’t possible, but they do involve considerably

more exotic “special functions” like the family of elliptic functions. In fact, if you start examining this there

isn’t anything obviously better about functions like cube roots than these lesser known special functions;

none of them are typically implemented in hardware, and must be approximated to a given accuracy

(round-off precision) with software algorithms.

This is the key point I want to make: for eigenproblems we have to give up on the notion that we

can write down a simple terminating algorithm which would give the exact solution if evaluated in exact

arithmetic. Instead we will look at iterative methods, which will begin with a guess and refine it for a

number of steps until the approximation error is deemed small enough (for example, that ‖Ax − λx‖ is

below a tolerance related to round-off error). Smaller errors will require more steps.

However, at least in some cases, it turns out the iterative methods are so wonderfully robust and

efficient that for all intents and purposes we can guarantee a priori only a fixed number of steps will be

required for a particular precision, no matter the matrix A, and thus it’s tempting to treat them as direct

methods (i.e. not iterative).

2 The Power Method

The very simplest eigen-algorithm1 of all is called the Power Method. Start with a random vector x. If we

write it in terms of an orthonormal eigenbasis {ui} of A, x = α1u1 + . . . + αnun and then multiply by A,

we see the result is:

Ax = α1Au1 + . . .+ αnAun

= α1λ1u1 + . . .+ αnλnun

If we multiply the result by A again, we get:

A2x = A(Ax) = α1λ1Au1 + . . .+ αnλnAun

= α1λ
2
1u1 + . . .+ αnλ

2
nun

Similarly, multiplying k times with A gives:

Akx = α1λ
k
1u1 + . . .+ αnλ

k
nun

Now, as long as the coefficients αi are nonzero, eventually this sum will be dominated by the component

corresponding to the largest eigenvalue in magnitude: if |λ1| > |λi|, say, then the ratio of magnitudes of
1One of the fun things about eigenvalues and eigenvectors is that you can use the eigen- prefix on just about any relevant

eigenword.

2



coeffients
|α1λ

k
1|

|αiλki |
will grow arbitrarily large as k goes to infinity.

Assuming the eigenvalues are sorted by decreasing magnitude, so |λ1| is the biggest, this means

that after multiplying x by A enough times it will be nearly proportional to an eigenvector associated

with λ1. (This isn’t strictly true: we’ll see the special problem case in a moment.)

Unfortunately, if |λ1| 6= 1, this result Akx will either blow up or vanish to zero exponentially—

eventually being lost to the finite range of floating-point values. Thus to make the Power Method into a

usable algorithm, we rescale the vector to be unit-length after every multiply:

• Start with an arbitrary x

• For k = 1, 2, . . . until convergence:

• x← Ax

• x← x
‖x‖

• Return x as an eigenvector for the largest eigenvalue of A

This brings up two questions immediately, such as what is the eigenvalue for x (needed, if for

nothing else, to evaluate if we’ve converged adequately), and how efficient can we expect this algorithm

to be?

3 The Rayleigh Quotient

The first problem, determining the eigenvalue for a given approximation to an eigenvector, is solved

neatly with the Rayleigh Quotient, defined for a vector x as:

xTAx

xTx

In the case above, where x is unit-length, obviously this simplifies to xTAx. Clearly if x is an eigenvector,

so Ax = λx, this quotient does evaluate to λ.

What’s even better is that it provides an optimal estimate of the eigenvalue even if x isn’t exactly

an eigenvector. The Rayleigh quotient minimizes

min
λ
‖Ax− λx‖22

which is easy to see by differentiating with respect to λ and setting it to zero:

2xT (Ax− λx) = 0

3



4 The Convergence of the Power Method

The second question, how fast does the Power Method converge, can be answered in asymptotic terms

fairly easily. Just as α1λ
k
1u1 eventually has to be by far the largest magnitude term in the eigen-expansion

ofAkx, the second largest term must be α2λ
k
2u2, and this will similarly dominate the rest. Thus eventually

the error in our estimate of the eigenvector will be proportional to the ratio

|λ2|k

|λ1|k
=
(
|λ2|
|λ1|

)k
The smaller the ratio |λ2|/|λ1| is (it must be between 0 and 1), the faster the algorithm converges.

Unfortunately, this ratio depends on A, and it could be arbitrarily close to 1. In fact, it could even

be exactly equal to 1. This might be harmless—a repeated largest eigenvalue, in which case the Power

Method will converge to a non-unique eigenvector—or it might be serious indeed, if λ2 = −λ1, in which

case convergence just won’t happen at all. For example, you can take a look at the matrix

A =

(
0 1

1 0

)

which has eigenvalues 1 and −1. Multiplying by A simply swaps the two entries in x; unless you start

with x already equal to one of the eigenvectors (1, 1) or (1,−1), swapping k times doesn’t get you any

closer to solving the problem.

On the other hand, if there is a good separation between the magnitude of λ1 and λ2 then the

Power Method can work quite well. In particular, it gives linear convergence, which technically means

that for k large enough, the error at step k + 1 is bounded by a constant C times the error at step k:

‖e‖k+1 ≤ C‖e‖k

where 0 ≤ C < 1. Here the constant C is the ratio |λ2|/|λ1|. An algorithm with linear convergence will,

eventually, improve the error by one decimal digit of accuracy after a constant log10(1/C) steps.

Incidentally, the “for k large enough” caveat is absolutely critical, just as in O() notation. We

generally expect iterative methods to spend a few steps initially behaving poorly (the error might even

increase, or fluctuate erratically), depending on how good or bad the initial guess was. We might call

this a “transient regime”. Eventually however, the error analysis above will take hold (e.g. the u1 term

is significantly larger than the u2 term, which is significantly larger than all the rest), and the expected

convergence behaviour is displayed in what might term the “convergence regime”.

4



5 Shifting

The Power Method can be abysmally slow if the two largest eigenvalues aren’t well separated; to make

it a more effective algorithm, we need tools that can cause a better separation. In particular, we’ll look at

modifications we can make to A that don’t change the eigenvectors but do change the eigenvalues. The

simplest such transformation is called shifting: replace A with A− µI for some real number µ (the shift).

Observe that if Ax = λx, then (A − µI)x = (λ − µ)x: the eigenvectors are preserved, but the

eigenvalues get shifted through subtracting µ.

Ignoring what happens to the other eigenvalues, if µ was much closer to λ2 then λ1, this would

mean the Power Method applied to the shifted A− µI converges according to the ratio

|λ2 − µ|
|λ1 − µ|

which could be significantly closer to zero, and thus give much faster convergence.

The fly in the ointment here (ignoring how we might approximate λ2 in the first place) is that this

shift might cause other eigenvalues to be promoted to the largest. For example, suppose the eigenvalues

of A are {−1.001,−1, 10, 11}. Here 11 is the largest and 10 is the second largest with a convergence rate

of 10/11, but shifting by µ = 10 transforms these to {−11.001,−11, 0, 1}where the largest in magnitude is

now −11.001 and the convergence rate is 11.0001/11: much worse.

Next lecture we’ll continue this quest by looking at another way to transform A that modifies

eigenvalues but leaves eigenvectors unchanged.

5


