
CS 542G: Solving Sparse Linear Systems

Robert Bridson

November 26, 2008

1 Direct Methods

We have already derived several methods for solving a linear system, say Ax = b, or the related least-

squares problem with A rectangular. These assumed the matrix A is dense, i.e. all entries are stored

explicitly regardless of whether they are zero or not. We can certainly apply these methods to sparse ma-

trices stored densely, but they’re not very scalable: dense Cholesky, LU , QR etc. are all O(n3) algorithms

in their usual form (as in LAPACK). To get accurate approximate solutions to PDEs in 3D, we already are

routinely facing values of n in the tens of millions today, and this is sure to increase in the future—not

only will the dense routines be far too slow for this value of n, even the O(n2) memory cost will be far too

big.

The eigen decomposition and the SVD are likely to be fully dense even whenA is sparse. However,

a quick check of the results of Cholesky, LU orQR applied to sparse matrices suggest the resulting factors

often have some degree of sparsity themselves. For example, if you think about the first step of right-

looking LU (i.e. row reduction), the rest of the sparse matrix is updated with a rank-one product of the

first column and row—which therefore is sparse itself—and so the updated matrix will probably be sparse

as well. We can therefore translate the dense Cholesky, LU , and QR (and related algorithms) into sparse

algorithms, where we are careful only to ever operate on and store nonzero values. These methods for

solving sparse linear systems and least-squares problems are termed direct methods, since they directly

get the solution in a fixed number of steps (unlike iterative methods).

Writing a basic sparse version of, say, Cholesky isn’t too hard at all: if you go the right-looking

route, for example, you would want to store the nonzero entries in the matrix in some sort of dynamic

data structure—maybe some sort of balanced tree for each column—and apart from loops going over just

the nonzeroes instead of all entries, the code would look remarkably similar. Writing code to solve a linear

system with a sparse triangular factor is similarly pretty simple (and could also be used in the context of

1



a left-looking or up-looking variant of Cholesky). These are usually far, far better than using fully dense

methods to solve sparse linear systems. However, we can do significantly better with more sophisticated

approaches.

There are two big issues for an advanced sparse direct method:

• ensuring the sparsity of the factors, and

• optimizing performance.

We’ll take a brief look at these, focusing on Cholesky factorization as the most straightforward case,

though much of this work generalizes toLU andQR (in the latter case, particularly sinceR is the Cholesky

factor of ATA, if you recall). The huge benefit of SPD matrices and Cholesky factorization is the guar-

anteed stability: partial pivoting is unnecessary, and thus we can exactly model the “structure” of the

factorization without needing to know the actual numerical entries.

1.1 The Graph Model

The sparsity pattern (or “nonzero structure”) of a matrix is simply a notion of where the nonzero entries

are, or more precisely which entries are explicitly stored in the data structure1. A very useful model of

the sparsity pattern is to construct a graph, where the vertices correspond to rows of the matrix and the

edges correspond to the off-diagonal nonzero entries in the matrix. For a symmetric-structure matrix, the

graph is undirected.

One step of right-looking Cholesky, or row-reduction, involves subtracting multiples of the first

row from all other rows with a nonzero in the first column. This set of rows corresponds exactly to

the neighbours of the first row in the graph. By subtracting off a multiple of the first row from any of

these, discounting fluke cancellations, in graph terms we will be adding edges to all of the first row’s

neighbours. That is, we can think of one step of Cholesky as eliminating (deleting) the first vertex from

the graph after connecting up all of its neighbours (adding an edge between any two if there isn’t already

an edge)—note the neighbours will then induce a complete subgraph.

1This more precise definition allows us to include cases where an unexpected cancellation causes a zero which we nonetheless

store as if it was a general nonzero entry.

2



1.2 Ordering for Sparsity

Each step of Cholesky potentially could add new edges to the graph that didn’t exist before—in other

words, create new nonzeros in the L factor that weren’t present in the original A. These new entries are

called fill. If there is a lot of fill, the L factor will take a lot more memory to store (perhaps not even fit in

main memory anymore) and the Cholesky factorization is going to run slowly. The first issue confronting

direct methods is to try to keep fill as low as possible.

Since A is given to us—we can’t change the initial graph—it may seem at first like there’s no

opportunity to affect the amount of fill we get. However, we do have one option: ordering. If we per-

mute the rows of the matrix, and symmetrically the columns with the same permutation, we don’t really

change the linear system—it’s trivial to similarly permute the right-hand-side and solution to make the

equivalence. Such a symmetric permutation also obviously preserves the SPD property of the matrix, so

Cholesky factorization still works. However, the Cholesky factorization of the reordered matrix may end

up producing a completely different L than the original.

In graph terms, this amounts to relabeling the vertices of the graph—deciding on a different order

of elimination. This can have a profound impact on fill. The most extreme example is the “star” graph,

where a central vertex is connected to the n − 1 other vertices and no other edges exist. If the central

vertex is eliminated first (corresponding to a sparse matrix that’s diagonal apart from a dense first row

and column), immediately all the remaining n− 1 vertices are connected to each other (the matrix fills in

completely, becoming fully dense. However, if any of the other vertices—which each only have a single

neighbours—are eliminated first, no fill occurs. Repeating the argument, if we order the central vertex

last (a sparse matrix that’s diagonal apart from a dense last row and column) we end up with zero fill. In

this example, just by reversing the ordering we can go from O(n2) fill to zero fill.

This example generalizes to some extent. For example, if the graph is a tree (or forest), a zero fill

ordering can be constructed as follows:

• Pick an arbitrary vertex as the root.

• Make any traversal of the tree starting at the root, i.e. only visiting a non-root vertex after a neigh-

bour has been previously visited. Examples include depth-first and breadth-first search.

• Order the vertices in the reverse order of traversal, so the root is last.

One particular case we’ve already seen is the tridiagonal matrix that popped up in solving the 1D version

of the Poisson problem with finite differences: its graph is a single path, a trivial tree.

3



Unfortunately, this is a rare case. Usually some amount of fill in unavoidable. Even more unfortu-

nately, determining a minimum fill ordering is probably NP-hard (the unsymmetric version is definitely

NP-hard, and many other related sparse matrix/graph problems are NP-hard). We instead need to rely

on heuristic algorithms that apparently perform well in practice—well enough to make direct methods

useful. There are two particular approaches which have arisen as the best.

The first is to take a purely greedy strategy: order the vertices one by one, at each step picking

the vertex which will cause the least fill. Even simpler, we can just pick a vertex with minimum degree

(number of neighbours) as a way to bound possible fill. This is the Minimum Degree algorithm. There

have been a number of breakthroughs in making this algorithm more sophisticated, so that modern vari-

ants not only give somewhat higher quality orderings than the simple greedy approach, but also run in

linear space and nearly linear time (even if the fill and Cholesky factorization time are much more than

linear). The standard software today is AMD by Tim Davis et al., though further incremental improve-

ments have been made by some researchers. (Incidentally, Tim Davis at the University of Florida not only

has written some of the best direct method software available—and has released it as open-source—but

also maintains a list of available direct method software and more.)

The second heuristic approach to ordering is based on graph partitioning. This is based on find-

ing a good “vertex separator” can be found, i.e. a small set of vertices whose removal from the graph

partitions it into roughly equal sized disconnected components. Finding optimal partitionings of graphs

is NP-hard as well, but very good heuristic methods have been developed—with the Metis package of

Karypis et al. being probably the most popular open-source software today. If the vertex separator is

ordered last, with all the components ordered before it, then no fill edges can be created between the

components. If the components are recursively ordered the same way, we arrive at the nested dissection

algorithm. It has been shown that for reasonable meshes (as we might use for solving the Poisson prob-

lem with finite differences or finite elements) nested dissection can produce orderings that only produce

some constant factor more than the minimum possible fill: O(n log n) fill for 2D problems, and O(n5/3) fill

for 3D.

Hybrids of minimum degree and nested dissection (e.g. switching to minimum degree in the recur-

sion for small-enough components) currently are the best known algorithms for fill reduction. For many

problems, including 2D PDEs, the low amount of fill they produce often makes direct methods the best

choice for a linear solver. In other cases, especially for 3D PDEs on large meshes, the amount of fill may

be too large for direct solvers to be feasible.

4



1.3 High Performance Direct Solvers

For Cholesky, where again partial pivoting isn’t needed and the computation can be modeled exactly

without knowing the numerical values of the nonzeroes in the matrix, significant gains in performance

can be realized from the graph model. In particular, the exact nonzero structure of the factor L can

be predicted in advance of the actual numerical factorization—in far less time and using less memory.

This “symbolic factorization” step can be done after ordering, and obviate the need for dynamic data

structures. This already makes for a huge gain in performance, since not only are overheads related to

maintaining dynamic data structures eliminated, the factor can also be stored in a single contiguous block

of memory with attendant cache benefits.

Even greater acceleration is possible for some problems. Since each step of the factorization induces

a complete subgraph (on the neighbours of the eliminated vertex), it’s quite natural for dense submatrices

to arise during the course of factorization. The numerical operations on these submatrices can then be

carried out as a whole with level 3 BLAS and LAPACK routines, which may come close to the peak

floating point performance of the processor; regular sparse operations usually can only achieve a tenth of

peak performance, due to cache misses, branch misprediction, and pipeline bubbles.

There are many excellent modern direct solver packages out there, many of which are open-

source. See http://www.cise.ufl.edu/research/sparse/codes/ for Tim Davis’s list—I’d high-

light UMFPACK and PARDISO in particular, and also recommend taking a look at my own code for

Cholesky (and generalizations to some symmetric indefinite matrices) called KKTDirect, which is in the

public domain but not yet on Davis’s list.

2 Iterative Methods

In cases where direct solvers use too much memory or are too slow, a different approach is called for:

iterative methods. Here we start with an initial guess at the solution and steadily refine it, hopefully

converging to the correct answer quickly, and hopefully with control over the amount of memory needed.

We have of course already seen iterative methods in the context of more general optimization

problems. One of the first things to concern ourselves with is knowing when to stop. Thankfully, for a

linear system, that’s fairly easy to determine. For the system Ax = b, with a particular guess xi at the

solution, we can define the residual as:

ri = b−Axi

This is the same as our definition of residual for least squares problems earlier. A well-posed linear system

5



is solved if and only if the residual is zero, and it’s not too difficult to work out a bound on the relative

error of the solution based on the condition number of A: our original analysis of the well-posedness of a

linear system pretty much did this. Thus we usually stop an iterative linear solver once the norm2 of the

residual is below some user-supplied tolerance.

One of the nice aspects of iterative methods is that if we have a good initial guess (perhaps the pre-

vious solution from a sequence of related linear systems) then that should speed up the method. However,

it’s often more convenient mathematically to assume an all zero initial guess. In fact, if the nonzero initial

guess is x0, we can instead think of solving A(x0 + ∆x) = b for the correction ∆x; this linear system is

A∆x = b−Ax0

= r0

and it starts naturally with a guess of ∆x0 = 0.

Now let’s turn to example iterative methods. We’ll divide them loosely into two categories:

• stationary methods, where the i’th guess depends just linearly on the initial right-hand-side, and

• non-stationary methods, where more interesting formulas can be used.

2.1 Jacobi

Probably the simplest stationary method is Jacobi. It isn’t really considered a practically useful method

anymore, but related generalizations and combinations of Jacobi with other methods are significant so

it’s well worth knowing—and it serves as a good starting place for the next method, which is much more

useful.

The idea behind Jacobi is to look at an individual equation in Ax = b, say the i’th row:

ai1x1 + ai2x2 + . . .+ ainxn = bi

Assuming the diagonal aii entry is the largest in this row of the matrix, the left-hand-side of this equation

responds most sensitively to adjustments in xi. Therefore, if we have an “old” guess for the x values, in

some sense the most efficient way to update it to exactly satisfy the i’th equation is to modify xi:

xnew
i =

bi − ai1x
old
1 − . . .− ainx

old
n

aii

2Usually the 2-norm is most convenient, but if the method has really gotten close to convergence it shouldn’t really matter

which of the standard norms is used.

6



Here the . . . do not include the xi term of course. If we simultaneously update x1 from the first equation

all the way to xn from the last equation, we have the Jacobi step.

Jacobi has many nice features: it needs no extra storage for a factorization, each step runs basically

as fast as a sparse matrix multiplication with A, and every entry of x can be updated in parallel. It’s fairly

simple to prove it does indeed converge for diagonally dominant matrices. However, it usually fails to

converge for more general linear systems, and even when it does work its convergence rate can be very

slow for systems with large condition numbers.

2.2 Gauss-Seidel

One very small change to Jacobi can significantly improve its power. When updating xi, instead of using

just old values for the other entries in x—from the previous iteration—we can instead use the newest

values available. That is, we update the values one at a time, in order from x1 to xn, always using the

latest known values. At equation i we have:

xnew
i =

bi − ai1x
new
1 − . . .− ai,i−1x

new
i−1 − ai,i+1x

old
i+1 − . . .− ainx

old
n

aii

This is the Gauss-Seidel method.

Gauss-Seidel is guaranteed to work for diagonally dominant matrices, just like Jacobi, but is often

faster to converge. More importantly, it is guaranteed to converge for any arbitrary SPD matrix A, though

this isn’t obvious at first blush. Despite other methods having better asymptotic guarantees, it’s often the

best bet—and certainly the simplest—when time constraints mean only a few iterations can be taken but

a crude approximation to the solution is acceptable.

Successive Over-Relaxation (SOR) is a common extension of Gauss-Seidel, with the idea that if

going from xold
i to xnew

i gets you closer to the solution, going a little bit further in the same direction may

do even better. A relaxation parameter3 ω > 1 is introduced, similar to a step-length in line search. The

SOR update for equation i is:

xnew
i = xold

i + ω

(
bi − ai1x

new
1 − . . .− ai,i−1x

new
i−1 − ai,i+1x

old
i+1 − . . .− ainx

old
n

aii
− xold

i

)

With the right choice of ω, this can converge an order of magnitude faster than regular Gauss-Seidel.

Unfortunately, the optimal ω is strongly dependent on A and difficult to determine cheaply—and is often

3The term “relaxation” is often associated with older iterative methods; I suspect the term is physically motivated from

PDE problems in elasticity where solving the linear system corresponds to finding a minimal stress, i.e. optimally relaxed,

configuration of an elastic object.

7



quite sensitive in that a slightly larger or smaller ω may give much slower convergence, and if too large

can even cause SOR not to converge at all. If the type of problem is known in advance, a good value may

be determined—for example, ω = 1.3 is often reasonable for the Poisson problem—but for “black box”

software which is just given an arbitrary matrix this may be out of the question.

Gauss-Seidel and SOR are significantly more powerful than Jacobi, but do suffer one disadvantage

in comparison: they aren’t as obviously parallelizable. Updating xi would appear to require variables x1

to xi−1 to be updated already, necessarily sequentializing the code. However, if A is sufficiently sparse,

it may be symmetrically permuted (as we discussed for direct methods) to allow for some degree of

parallelism. The update of xi actually only has to wait for those xj where aij 6= 0, and an appropriate

reordering can exploit this to allow parallelism.

2.3 Steepest Descent

While there several other useful stationary methods4 let us now turn to nonstationary iterative solvers.

The first example is one we have seen already for general optimization: Steepest Descent.

When A is SPD, solving the linear system Ax = b is equivalent to minimization the following

quadratic:

min
x

1
2
xTAx− xT b

Differentiating this objective with respect to x and setting the gradient to zero immediately gives the

linear system Ax − b = 0. Any of the optimization algorithms we looked at before are thus applicable

to solving an SPD linear system, short of Newton (which relies on the ability to solve the linear system

itself).5 For steepest descent, we in fact already worked out the optimal step length for line search when

we took a stab at analyzing its convergence properties.

Let’s look at steepest descent applied to SPD systems in more detail. First we need the search

direction, the negative of the gradient. The gradient of the quadratic form is Ax − b, therefore the search

direction is b − Ax, i.e. the residual r. With step length α, we have a new guess xnew = x + αr which

plugged in to the objective gives:

1
2

(x+ αr)TA(x+ αr)− (x+ αr)T b

=
1
2
xTAx+ αrTAx+

1
2
α2rTAr − xT b− αrT b

4If interested in learning more, “Chebyshev acceleration”, “domain decomposition”, and “multigrid” are all powerful classes

of stationary methods you might look up.
5For example, Cyclic Coordinate Descent ends up being equivalent to Gauss-Seidel.

8



The locally optimal α which minimizes this results from differentiating and setting to zero:

rTAx+ αrTAr − rT b = 0

⇒ α =
rT b− rTAx

rTAr

=
rT (b−Ax)
rTAr

=
rT r

rTAr

Note calculating this α requires (as the numerator) the 2-norm of r, which is convenient for testing for

convergence as well. Once we have it, x is updated as xnew = x + αr, and the new residual can be

calculated as:

rnew = b−Axnew

We can actually save a little computation here, as this is equivalent to

rnew = b−A(x+ αr)

= (b−Ax)− αAr

= r − αAr

and we have to compute Ar in finding α anyhow.

Putting this together into a reasonably efficient form, we get the following algorithm:

• Set x0 = 0 and r0 = b (or correct for a nonzero initial guess)

• For i = 0, 1, . . .

• Compute ρ = rT
i ri; if less than user-specified ε stop (converged)

• Multiply s = Ar

• Set α = ρ/(rT s), the optimal step length

• Update xi+1 = xi + αri

• Update ri+1 = ri − αs

I’ve included distinct subscripts for the guesses at x and r, but typically the update would overwrite the

existing values since the older values need not be kept around.

In general nonlinear optimization, steepest descent is a useful method to be able to fall back on (or

otherwise incorporate into fancier algorithms) since it has strong guarantees about converging for many

classes of problems—even if it can be slow. However, in the SPD linear system case, steepest descent

is asymptotically no faster than Gauss-Seidel and can be slower than SOR—and in real terms is almost

always somewhat slower than Gauss-Seidel. This makes it nearly irrelevant for solving linear systems.

9



However, it does form the basis for a much more powerful algorithm that has become essentially the

standard iterative method for SPD problems, and has variations for more general linear systems.

2.4 Conjugate Gradient

In steepest descent, the first guess is x0 = 0 with residual r0 = b. Every subsequent guess x is a linear

combination of the previous guess and the previous residual; the new residual is a linear combination of

the previous residual and A times the previous residual. It’s not hard to prove, then, that

xi ∈ span(b, Ab, . . . , Ai−1b)

This linear subspace of dimension i is called a Krylov subspace, formed from powers of the matrix mul-

tiplying a given vector b.

One fundamental reason who steepest descent is slow is that it’s too greedy: it finds a new guess

by optimizing over just a line, a one-dimensional space, parallel to the current residual. We can do far, far

better by instead seeking a minimum over the entire Krylov space seen so far. This is one interpretation

of the Conjugate Gradient (CG) algorithm.

The first comment to make about this is that we’ve seen this idea many times before. What it

amounts to is taking a large problem (of dimension n), finding a much smaller subspace we think might

be useful (of dimension i), and solving the problem restricted to that subspace with the hope that the

result should be a good approximation to the full problem. We did exactly the same in Rayleigh-Ritz for

approximating eigenvalues and eigenpairs and in the Finite Element Method for approximating solutions

of PDEs.

The second comment is that this might appear expensive: at the i’th iteration we are finding the

solution of an i-dimensional quadratic minimization, i.e. an i× i linear system, which could take as much

as O(i3) time. If it takes 1000 iterations to converge, that would be enormously expensive in total. The

near-miracle of CG is that a basis for the Krylov space can be constructed which allows us to go from the

i’th guess to the next with a constant number of operations: one multiply withA, a few dot-products, and

a few vector updates. CG is hardly more expensive than steepest descent in its final form. We don’t have

time in this course to derive it, but I’ll give you the usual version for reference:

• Start with x0 = 0, r0 = b, p1 = r0.

• Compute ρ0 = rT
0 r0 and if zero already, return.

• For i = 1, 2, . . .

• Multiply q = Api.

10



• Compute α = ρi−1/(pT
i q).

• Update xi = xi−1 + αpi and ri = ri−1 − αq.

• Compute ρi = rT
i ri, and if small enough return (converged).

• Compute β = ρi/ρi−1.

• Update pi+1 = ri + βpi.

As with steepest descent, the updates to x, r, and the auxiliary vector p are usually done in-place, and

past ρ values are discarded when no longer needed. Also, for robustness there’s generally some maximum

iteration count at which point, if still not converged, we return with an error flag.

It should also be pointed out that, just like steepest descent, A only appears in the algorithm in

the form of a matrix-vector product, q = Ap. This gives the method a lot of flexibility that methods like

Gauss-Seidel (which depend on knowing the entries in A) don’t necessarily have. For example, A might

not be explicitly stored as a sparse matrix, but only arise as a black-box function call which gives the effect

of multiplying a vector by A: A might be most naturally given as a product of factors; in FEM where A

is a global stiffness matrix assembled from local stiffness matrices, we can skip the assembly step and

directly compute Ap element by element; or the application of A might be approximated with algorithms

like Barnes-Hut or the Fast Multipole Method.

CG can be shown to converge, in the worst case, in the square root of the number of iterations that

steepest descent takes: it depends on the square root of the condition number of A. This is as fast as SOR

can converge in general, but it happens automatically without the tricky business of finding an optimal

relaxation parameter. In fact, CG does even better. For an n × n matrix, it must get the exact solution

by the n’th iteration, since at that point it’s optimizing over the entire n-dimensional space—at least in

exact arithmetic. In floating-point arithmetic it might never get there exactly, but this is a strong hint that

CG has to speed up as it progresses. Another way of thinking about it is that the Krylov spaces over

which CG runs contain increasingly good approximations of the biggest and smallest eigenvectors (due

to the Power Method), and so CG in essence solves the largest and smallest components early reducing

the effective condition number of what’s left...

Back when it was invented in the early 1950s, CG was considered more of a direct method since

in exact arithmetic it should get the exact answer after n steps. It was observed at the time that a good

approximation could be found much earlier on, but since direct methods were a decent constant factor

faster for dense matrices, CG was shelved for many years. Its full potential as an iterative method was

only realized decades later. Further work, mostly finished by the 1990s, has extended the ideas of CG to

Krylov subspace methods for other types of matrices: symmetric indefinite problems (with algorithms

named MINRES, SYMMLQ, SQMR, and one or two others), least-squares problems (e.g. LSQR), and

11



general unsymmetric problems (GMRES, BiCGStab, and a few others). These are now almost always the

standard iterative approach, particularly thanks to one more advance.

2.5 Preconditioning

While CG is an order of magnitude faster than steepest descent, Gauss-Seidel, etc. and is guaranteed to

work, for large or ill-conditioned problems it might still be very slow. Ideally we would be able to change

the matrix to have a smaller condition number, which would make CG faster—and in fact, we can do

exactly that!

Notice that the linear system Ax = b is exactly equivalent to MAx = Mb, for any invertible matrix

or linear operator M . Sweeping aside the issue of whether MA is symmetric or not for now, if the condi-

tion number of MA is much smaller than that of A, CG applied to this modified system should run much

faster. We call M a preconditioner.

With some work, it’s possible to derive the Preconditioned Conjugate Gradient (PCG) algorithm,

which works for any symmetric positive definite matrix A and any symmetric positive definite precondi-

tioner M . For your reference (we have no time to derive it either), here it is:

• Start with x0 = 0, r0 = b, z = Mr0, p1 = z0.

• Compute ρ0 = rT
0 z and if zero already, return.

• For i = 1, 2, . . .

• Multiply q = Api.

• Compute α = ρi−1/(pT
i q).

• Update xi = xi−1 + αpi and ri = ri−1 − αq.

• If ‖ri‖ is small enough return (converged).

• Precondition zi = Mri.

• Compute ρi = rT
i zi.

• Compute β = ρi/ρi−1.

• Update pi+1 = zi + βpi.

We can actually reuse the same storage for q and z, so this is still nice and trim.

Ideally M should approximate the action of A−1, since κ(AA−1) = κ(I) = 1. But of course we also

want something that’s efficient to evaluate; the art of preconditioning is finding a good trade-off. This

is the main area of effort in research for iterative linear solvers today, and is also an example where sta-

tionary methods we saw before—even Jacobi—can find a practical use, as linear operators approximating

A−1 that can be embedded in a robust Krylov subspace solver.

12


