Notes Review LU

+ Note that r?log(r) is NaN at r=0: & Write A=LU in block partitioned form
instead smoothly extend to be 0 at r=0 ® By convention, L has all ones on diagonal
+ Equate blocks: pick order to compute them
«+ Schedule a make-up lecture? * “Up-looking”: compute a row at a time

(refer just to entries in Ain rows 1 to i)

* “ eft-looking”: compute a column at a time
(refer just to entries in A in columns 1 to j)

® “Bordering”: row of L and column of U
* “Right-looking”: column of L and row of U
(note: outer-product update of remaining A)

+ Can do all of these “in-place” (overwrite A)
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Pivoting Row Partial-Pivoting
+ LU and LDLT can fail + Row partial-pivoting: PA=LU
* Example: if A;;=0 * Compute a column of L, swap rows to get biggest

entry on diagonal
® Express as PA=LU where P is a permutation matrix
® P is the identity with rows swapped (but store it as a

+ Go back to Gaussian Elimination ideas: reorder
the equations (rows) to get a nonzero entry

+ In fact, nearly zero entries still a problem permutation vector)
* Perhaps cancellation error => few significant digits * This is what LAP_ACK uses _
* Dividing through will taint rest of calculation ¢ Guarantees entries of L bounded by 1 in
magnitude

+ Pivoting: reorder to get biggest entry on diagonal
® Partial pivoting: just reorder rows (or columns)
* Complete pivoting: reorder rows and columns

+ No good guarantee on U — but usually fine

+ If U doesn’t grow too much, comes very close to
optimal accuracy

(expensive)
Symmetric Pivoting Reconsidering RBF
+ Problem: partial (or complete) pivoting destroys + RBF interpolation has advantages:
symmetry * Mesh-free
+ How can we factor a symmetric indefinite matrix ® Optimal in some sense
reliably but twice as fast as unsymmetric * Exponential convergence (each point extra
matrices? data point improves fit everywhere)
+ One idea: symmetric pivoting PAPT=LDLT ® Defined everywhere
* Swap the rows the same as the columns + But some disadvantages:
« But let D have 2x2 as well as 1x1 blocks on the ® |t’s a global calculation
diagonal (even with compactly supported functions)
* Partial pivoting: Bunch-Kaufman (LAPACK) * Big dense matrix to form and solve

* Complete pivoting: Bunch-Parlett (safer) (though later we’'ll revisit that...
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Gibbs

+ Globally smooth
calculation also
makes for
overshoot/
undershoot
(Gibbs phenomena)

around
discontinuities

+ Can’t easily control .._M
effect
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Linear Least Squares

+ |dea: instead of interpolating data + noise,
approximate

# Pick our approximation from a space of
functions we expect (e.g. not wiggly --
maybe low degree polynomials) to filter
out the noise

+ Standard way of defining it:
f)=228,x)

A= argmlini(fj —f@))

cs542g-term1-2007 9

Normal Equations

o First attempt at finding minimum:
set the gradient equal to zero
(called “the normal equations”)

J
a—x"b - Ax; =0

%((b — Av) (b— Ax))=0

d

a—(bTb —2x"Ab+x" AT Ax) =0
X

—2ATh+2ATAx=0
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Noise

« If data contains noise (errors), RBF strictly

interpolates them

+ If the errors aren’t spatially correlated, lots

of discontinuities: RBF interpolant
becomes wiggly

Rewriting
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¢ Write it in matrix-vector form:

n

2( 2 ¢<x)}2 o Ax;

b= ny
=(h o A

A; =¢;(x;) (arectangular n X k matrix)
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Normal Equations: Good Stuff
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o ATA is a square kxk matrix
(k probably much smaller than n)

Symmetric positive (semi-)definite
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Normal Equations: Problem

¢ What if k=n?
At least for 2-norm condition number,
k(ATA)=k(A)?
® Accuracy could be a problem...

+ In general, can we avoid squaring the
errors?
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