Notes



- Operate on sub-blocks of the matrix that fit the memory architecture well General goal:
- if it's easy to phrase an operation in terms of BLAS, get speed+safety for free
 - The higher the level better

- Solving linear systems
- Solving linear least squares problems •
- Solving eigenvalue problems
- Built on the BLAS, with blocking in mind to keep high performance
- Biggest advantage: safety
 - Designed to handle difficult problems gracefully
- www.netlib.org/lapack

Specializations

- When solving a linear system, first question to ask: what sort of system?
- Many properties to consider:
 - Single precision or double?
 - Real or complex?
 - Invertible or (nearly) singular?
 - Symmetric/Hermitian?
 - Definite or Indefinite?
 - Dense or sparse or specially structured?
 - Multiple right-hand sides?
- LAPACK/BLAS take advantage of many of these (sparse matrices the big exception...)

cs542g-term1-2007 7

Accuracy

- Before jumping into algorithms, how accurate can we hope to be in solving a linear system?
- Key idea: backward error analysis
- Assume calculated answer is the exact solution of a perturbed problem.
- The condition number of a problem: how much errors in data get amplified in solution

cs542g-term1-2007

Condition Number

- Sometimes we can estimate the condition number of a matrix a priori
- Special case: for a symmetric matrix, 2-norm condition number is ratio of extreme eigenvalues
- LAPACK also provides cheap estimates
 - Try to construct a vector IIxII that comes close to maximizing IIA⁻¹xII

cs542g-term1-2007 9

Gaussian Elimination

- Let's start with the simplest unspecialized algorithm: Gaussian Elimination
- Assume the matrix is invertible, but otherwise nothing special known about it
- GE simply is row-reduction to upper triangular form, followed by backwards substitution
 - Permuting rows if we run into a zero

cs542g-term1-2007 10

LU Factorization

- Each step of row reduction is multiplication by an elementary matrix
- Gathering these together, we find GE is essentially a matrix factorization: A=LU

where

- L is lower triangular (and unit diagonal), U is upper triangular
- ♦ Solving Ax=b by GE is then Ly=b Ux=v

Block Approach to LU

- Rather than get bogged down in details of GE (hard to see forest for trees)
- Partition the equation A=LU
- Gives natural formulas for algorithms
- Extends to block algorithms

Cholesky Factorization

- If A is symmetric positive definite, can cut work in half: A=LL^T
 - L is lower triangular
- If A is symmetric but indefinite, possibly still have the Modified Cholesky factorization: A=LDL^T
 - L is unit lower triangular
 - D is diagonal

cs542g-term1-2007 13