
1cs542g-term1-2007

CS542G - Breadth in
Scientific Computing

2cs542g-term1-2007

Web

! www.cs.ubc.ca/~rbridson/courses/542g

! Course schedule
• Slides online, but you need to take notes too!

! Reading
• No text, but if you really want one, try Heath…

• Relevant papers as we go

! Assignments + Final Exam information
• Look for Assignment 1

! Resources

3cs542g-term1-2007

Contacting Me

! Robert Bridson
• X663 (new wing of CS building)

• Drop by, or make an appointment (safer)

• 604-822-1993 (or just 21993)

• email rbridson@cs.ubc.ca

! I always like feedback!
• Ask questions if I go too fast…

4cs542g-term1-2007

Evaluation

! ~4 assignments (40%)

! Final exam (60%)

5cs542g-term1-2007

MATLAB

! Tutorial Sessions at UBC

! Aimed at students who have not
previously used Matlab.

! Wed. Sept. 12, 5 - 7pm, DMP 110.
www.cs.ubc.ca/~mitchell/matlabResources.html

6cs542g-term1-2007

Floating Point

7cs542g-term1-2007

Numbers

! Many ways of representing real numbers

! Apart from some specialized applications and/or
hardware, floating point is pervasive

! Speed: while not as simple as fixed point from a
hardware point of view, not too bad
• CPU!s, GPU!s now tend to have a lot of FP resources

! Safety: designed to do as good a job as
reasonably possible with fixed size
• Arbitrary precision numbers can be much more costly

(though see J. Shewchuk!s work on leveraging FPU!s
to compute extended precision)

• Interval arithmetic tends to be overly pessimistic

8cs542g-term1-2007

Floating Point Basics

! Sign, Mantissa, Exponent

! Epsilon

! Rounding

! Absolute Error vs. Relative Error

9cs542g-term1-2007

IEEE Floating Point

! 32-bit and 64-bit versions defined
(and more on the way)

! Most modern hardware implements the
standard
• Though it may not be possible to access all

capabilities from a given language

• GPU!s etc. often simplify for speed

! Designed to be as safe/accurate/controlled
as possible
• Also allows some neat bit tricks…

10cs542g-term1-2007

IEEE Special Numbers

! +/- infinity
• When you divide 1/0 for example, or log(0)

• Can handle some operations consistently

• Instantly slows down your code

! NaN (Not a Number)
• The result of an undefined operation e.g. 0/0

• Any operation with a NaN gives a NaN
! Clear traceable failure deemed better than silent

“graceful” failure!

• Nan != NaN

11cs542g-term1-2007

Exact numbers in fp

! Integers (up to the range of the mantissa)
are exact

! Those integers times a power of two (up to
the range of the exponent) are exact

! Other numbers are rounded
• Simple fractions 1/3, 1/5, 0.1, etc.

• Very large integers

12cs542g-term1-2007

Floating point gotchas

! Floating point arithmetic is commutative:
a+b=b+a and ab=ba

! But not associative in general:
(a+b)+c " a+(b+c)

! Not distributive in general:
a(b+c) " ab+ac

! Results may change based on platform,
compiler settings, presence of debugging
print statements, …

! See required reading on web

13cs542g-term1-2007

Cancellation

! The single biggest issue in fp arithmetic

! Example:
• Exact arithmetic:

1.489106 - 1.488463 = 0.000643

• 4 significant digits in operation:
1.489 - 1.488 = 0.001

• Result only has one significant digit (if that)

! When close numbers are subtracted, significant
digits cancel, left with bad relative error

! Absolute error is still fine…

14cs542g-term1-2007

Cancellation Example 1

! Can sometimes be easily cured

! For example, solving quadratic
ax2+bx+c=0
with real roots

15cs542g-term1-2007

Cancellation Example 2

! Sometimes not obvious to cure

! Estimate the derivative of an unknown
function

16cs542g-term1-2007

Accumulation

! 2+eps=2

! (2+eps)+eps=2

! ((2+eps)+eps)+eps=2

! …

! Add any number of eps to 2, always get 2

! But if we add all the eps first, then add to 2,
we get a more accurate result

17cs542g-term1-2007

Stability and Well-Posedness

! A problem is well-posed if small
perturbations/errors in the “data” lead to
small perturbations in solution
(and solution exists and is unique)

! A numerical method for a well-posed
problem might not be well-posed itself:
unstable method

! Floating-point operations introduce error,
even if all else is exact

18cs542g-term1-2007

Performance

! Vectorization, ILP

! Separate fp / int pipelines

! Caches, prefetch

! Page faults

! Multi-core, multi-processors

! Use good libraries when you can!

