

Shift and Invert (Rayleigh Iteration)

- \blacklozenge Say the eigenvalue we want is approximately λ_k
- ${\rm v}$ The matrix (A- $\lambda_k I)^{-1}$ has the same eigenvectors as A \$1\$
- υ But the eigenvalues are $\mu = \frac{1}{\lambda \lambda_k}$
- υ Use this in the power method instead
- υ Even better, update guess at eigenvalue each iteration: $\lambda_{k+1} = v_{k+1}^T A v_{k+1}$
- υ Gives cubic convergence! (triples the number of significant digits each iteration when converging)

cs542g-term1-2007 3

cs542g-term1-2007

Maximality and Orthogonality

 Unit eigenvectors v₁ of the maximum magnitude eigenvalue satisfy

$$|Av_1||_2 = \max_{\|u\|=1} \|Au\|_2$$

• Unit eigenvectors v_k of the k'th eigenvalue satisfy $\|Av_k\|_2 = \max_{u=1}^{\infty} \|Au\|_2$

$$\| u^{T} v_{k} \|_{2} = \| u^{T} v_{i} \|_{2} = 0, i < k$$

Can pick them off one by one, or....

cs542g-term1-2007

cs542g-term1-2007

2

Orthogonal iteration

- Solve for lots (or all) of eigenvectors simultaneously
- Start with initial guess V
- ◆ For k=1, 2, ...
 - Z=AV
 - VR=Z (QR decomposition: orthogonalize Z)
- Easy, but slow (linear convergence, nearby eigenvalues slow things down a lot)

Rayleigh-Ritz

- Aside: find a subset of the eigenpairs
 - E.g. largest k, smallest k
- \blacklozenge Orthogonal estimate V (n×k) of eigenvectors
- Simple Rayleigh estimate of eigenvalues:
 diag(V^TAV)
- Rayleigh-Ritz approach:
 - Solve k×k eigenproblem V^TAV
 - Use those eigenvalues (Ritz values) and the associated orthogonal combinations of columns of V
 - Note: another instance of "assume solution lies in span of a few basis vectors, solve reduced dimension problem"

Solving the Full Problem

- Orthogonal iteration works, but it's slow
- First speed-up: make A tridiagonal
 - Sequence of symmetric Householder reflections
 - Then Z=AV runs in O(n²) instead of O(n³)
- Other ingredients:
 - Shifting: if we shift A by an exact eigenvalue, A-λI, we get an exact eigenvector out of QR (the last column)
 improves on linear convergence
 - Division: once an offdiagonal is almost zero, problem separates into decoupled blocks

Nonlinear optimization

- Switch gears a little: we've already seen plenty of instances of minimizing, with linear least-squares
- What about nonlinear problems?

Find
$$x = \arg\min f(x)$$

- f(x) is called the objective
- This is an unconstrained problem, since no limits on x.

cs542g-term1-2007

Classes of methods

- Only evaluate f:
 - Stochastic search, pattern search, cyclic coordinate descent (Gauss-Seidel), genetic algorithms, etc.
- Also evaluate ∂f/∂x (gradient vector)
 - Steepest descent and relatives
 - Quasi-Newton methods
- Also evaluate $\partial^2 f / \partial x^2$ (Hessian matrix)
 - Newton's method and relatives

cs542g-term1-2007 9

7

Steepest Descent

- The gradient is the direction of fastest change
 - Locally, f(x+dx) is smallest when dx is in the direction of negative gradient ∇f
- The algorithm:
 - Start with guess $x^{(0)}$
 - Until converged:
 - Find direction $d^{(k)} = -\nabla f(x^{(k)})$
 - Choose step size $\alpha^{(k)}$
 - Next guess is $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$

cs542g-term1-2007 10

Convergence?

- At global minimum, gradient is zero:
 - Can test if gradient is smaller than some threshold for convergence
 - Note: scaling problem: min A*f(B*x)+C
- However, gradient is also zero at
 - Every local minimum
 - Every local maximum
 - Every saddle-point

Convexity

A function is convex if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
$$\alpha \in [0, 1]$$

- Eliminates possibility of multiple strict local mins
- Strictly convex: at most one local min
- Very good property for a problem to have!

Selecting a step size

- Scaling problem again: physical dimensions of x and gradient may not match
- Choosing a step too large:
 May end up further from minimum
- ◆ Choosing a step too small:
 - Slow, maybe too slow to actually converge
- Line search: keep picking different step sizes until satisfied

cs542g-term1-2007 13