
Notes for CS542G

Robert Bridson

October 23, 2007

1 Gravity

One particular set of second-order ODEs of interest is the “n-body problem”, where the motion of a set of point masses acting
under Newton’s law of gravitation is determined. Suppose the i’th point mass (i = 1, . . . , n) has mass mi, position ~xi, velocity
~vi = d~xi

dt and acceleration ~ai = d~vi

dt . The force on i due to gravitational attraction from j is:

~fij = −G
mimj

‖~xi − ~xj‖3
(~xi − ~xj)

where G is the gravitational constant, a surprisingly hard number to measure (G ≈ 6.67428 × 10−11Nm2/kg2 in SI units).
The total force on i is the sum over all other points:

~Fi =
∑
j 6=i

~fij

Even exploiting the symmetry ~fij = −~fji leads to O(n2) work just to evaluate the forces. This ends up being the critical
bottleneck for large calculations, such as attempts to simulate galaxy formation.

2 Clustering

One approach to making this computation more tractable is to exploit clustering. In fact, this idea underlies the point mass
model: the Earth is certainly not a single particle of enormous mass, but its radius is so small (and, more technically, it further
possesses near symmetry) compared to the distance to other celestial bodies that as a good approximation it can be taken to be
a single point. We’ll exploit that in accelerating the force computation: if a cluster of many points is small enough compared to
how far away it is, it can be well approximated with a single point.

Before getting to the question of determining these clusters, we need to understand how accurate this approximation is.
In general it will not be perfect, and in fact we will end up with a trade-off between speed and accuracy. However, since we’re
also making numerical errors in time integration, and even just in the floating point representations, as long as we can control
this error we needn’t be overly concerned. Later we’ll take a peek at the Fast Multipole Method, which in principle can reduce
the errors in the force computation to the level of floating point round-off (while still giving an asymptotically faster algorithm),
but there too the critical part is quantifying and controlling the error.

Suppose we aim to replace the cluster with a single point ~xC , where all cluster points are within distance r of ~xC . Let
the distance from ~xC to ~xi (at which we are approximating the gravitational attraction of the cluster) be D: ‖~xC − ~xi‖ = D.
Let’s take a look at ~fij for a j inside the cluster:

~fij = −G
mimj

‖~xi − ~xj‖3
(~xi − ~xj)

= Gmimj
~h(∆~xj)

1



where ∆~xj = ~xj − ~xC and the new function ~h is defined as:

~h(∆~x) =
~xD + ∆~x

‖~xD + ∆~x‖3

with ~xD = ~xC − ~xi, a length D vector.

We’ll rewrite ~h to be a little more convenient:

~h(∆~x) = [(~xD + ∆~x) · (~xD + ∆~x)]−
3
2 (~xD + ∆~x)

=
[
‖~xD‖2 + 2~xD ·∆~x + ‖∆~x‖2

]− 3
2 (~xD + ∆~x)

And now, we do our usual trick of expanding this in a Taylor series: how much different is ~h(∆~xj), the attraction evaluated at
point ~xj within the cluster, from ~h(0), the attraction computed at the centre of the cluster?

~h(∆~x) = ~h(0) +∇~h(0)∆~x + O(∂2~h∆x2)

I’ve left the error term a little vague, which involves products of the second derivatives of ~h with the components of ∆~x; with
a little more effort we could bound this rigourously, but for the purposes of this course we’ll stick with the O() notation hiding
a very reasonable constant. Let’s compute the gradient of ~h, using the vector version of the product rule:

∇~h(∆~x) = −3
2

[
‖~xD‖2 + 2~xD ·∆~x + ‖∆~x‖2

]− 5
2 [2~xD + 2∆~x]⊗ (~xD + ∆~x) +

[
‖~xD‖2 + 2~xD ·∆~x + ‖∆~x‖2

]− 3
2 I

Here the ⊗ symbol represents the outer-product (i.e. the matrix formed from multiplying two vectors), and I is the identity
matrix. Evaluating this at 0 and simplifying gives:

∇~h(0) = −3
~xD ⊗ ~xD

‖vecxD‖5
+

1
‖~xD‖3

I

= −3
~xD ⊗ ~xD

D5
+

1
D3

I

It’s similarly not hard to see that all the second derivatives of ~h, evaluated near 0, will be O(1/D4). Thus our Taylor series
approximation is:

~h(∆~x) = ~h(0) +∇~h(0)∆~x + O

(
∆x2

D4

)
=

~xD

D3
− 3

~xD(~xD ·∆~x)
D5

+
∆~x

D3
+ O

(
∆x2

D4

)
In the last line I rewrote the outer product times a vector in terms of the dot product (you can easily verify this step).

Now, let’s plug this approximation in for the force from all points in the cluster

~FiC = Gmi

∑
j

mj
~h(∆xj)

= Gmi

∑
j

mj
~xD

D3
− 3Gmi

∑
j

mj
~xD(~xD ·∆~xj)

D5
+ Gmi

∑
j

mj
∆~xj

D3
+ O

(
Gmi

r2

D4

)

= Gmi

∑
j

mj

 ~xD

D3
− 3Gmi~xD

D5
~xD ·

∑
j

mj∆~xj

 +
Gmi

D3

∑
j

mj∆~xj

 + O

(
Gmi

r2

D4

)

2



We haven’t yet exactly determined the centre of the cluster. One natural choice is to use the centre of mass of the cluster:

~xC =

∑
j mj~xj∑

j mj

which then happily implies that: ∑
j

mj∆~xj = 0

Thus the linear terms in the Taylor series expansion cancel out, and we’re left with:

~FiC = −GmimC
~xi − ~xC

‖~xi − ~xC‖
+ O

(
Gmi

r2

D4

)
where mC =

∑
j mj is the total mass of the cluster. Since the first term has magnitude O(Gmi/D2), we see that replacing the

cluster with its centre of mass incurs an O(r2/D2) relative error for computing the force on i.

3 The Barnes-Hut Tree Algorithm

This is the central idea of the Barnes-Hut algorithm for efficiently approximating the forces in an n-body problem: replace
distant clusters with their centres of mass, when the ratio r/D is small enough to keep the relative error below a user-supplied
tolerance. The tricky part is determining those clusters: our data is just a scattered set of points.

This is where trees enter. As a prelude to computing forces, a tree (more specifically a “bounding volume hierarchy”)
is constructed around the points. For example, an octree could be used: a cube containing all the points is the root of the tree;
each non-leaf node of the tree is split into eight children (in a 2 × 2 × 2 arrangement, halving the length along each axis); the
leaves are nodes containing one or zero points. Another popular alternative is the kd-tree, where instead of splitting a node
eight ways, each node is just split in half along the longest axis. Either tree can be made more efficient if every node is shrunk
to only just contain the points inside.

The total mass and centre of mass of each node (or rather, of all the points contained within a node of the tree) can be
computed efficiently from the leaves up: a node’s total mass is the sum of its children’s masses, and its centre of mass is the
centre of mass of its children’s centres. Added to this data we include at each node a bounding radius r, an upper bound on the
maximum distance of any of its points to the node’s centre of mass.

Then, when it comes time to evaluate the force on a particular i, the tree is traversed from the root down. If the ratio r/D
of the node’s bounding radius to the distance from ~xi to the node’s centre of mass is small enough to satisfy an error tolerance,
we use the approximation; otherwise, we recursively examine the children of the node. Obviously if we hit a leaf, we can use
the exact formula (or ignore it if the leaf happens to be the point i itself).

Constructing the tree takes O(n log n) time and O(n) space; with a constant that depends on the distribution of the
points and the error tolerance, the time to compute each force is expected to take O(log n) time. Thus Barnes-Hut is an
O(n log n) algorithm, a huge improvement over the naı̈ve O(n2) exact approach.

4 Generalization

The first generalization we will point out is that although it was set up explicitly for gravity problems, the idea behind the
method is not tied to this particular case. Electrostatic problems, where mass is replaced by charge (which can be both positive
or negative), have the same functional form. More generally, other radial functions can be used—in particular, any of the radial
basis functions we discussed earlier in the course! Taking the Taylor series approximation to reduce a cluster to a single point
still may work, though the formulas may be different.

3



5 Symmetrization

We can in fact speed up the force computation further. While the algorithm above is extremely efficient for computing the force
on a single particle i, you might imagine that two nearby particles will recompute nearly the same force for distant clusters, and
there should be a way to reuse that work. The other thing that might bother you is that depending on the clustering, the forces
computed so far aren’t necessarily symmetric: the force on i due to j might not be perfectly balanced by the force on j due to i
if clusters get involved.

This motivates a different approach, approximating the forces on all the particles simultaneously. More precisely,
we’ll look at the acceleration of every particle: the acceleration of two nearby points due to a distant cluster is going to be
approximately the same (independent of how massive the two points are)—this is the same reason underlying the approximately
constant acceleration (not force) due to gravity on the surface of the Earth.

Consider two clusters, both tightly bounded relative to the distance between them. If the centres of mass are ~xC1 and
~xC2 and the masses are M1 and M2, then the acceleration of any point i inside the first cluster due to the second cluster is
approximately:

~ai,C2 ≈ −G
M2

‖~xC1 − ~xC2‖3
(~xC1 − ~xC2)

which follows from applying the previous approximation twice, with an error depending on the ratio of bounding radii to
distance between the clusters. Underlying this is an approximation of the force between any two points i from the first cluster
and j from the second cluster:

~fij ≈ −G
mimj

‖~xC1 − ~xC2‖3
(~xC1 − ~xC2)

and this gives rise to opposite and equal forces: ~fij = −~fji.

We thus can approximate accelerations of all the points as follows, with two recursive functions:

• add internal accelerations (which takes one node of the tree and adds all accelerations between points inside
that node),

• and add external accelerations (which takes two distinct nodes, and adds all accelerations between pairs of
points from the nodes).

We begin with a call to add internal accelerations on the root node.

If add internal accelerations is called on a leaf (containing one or zero points) there is nothing to do. Oth-
erwise it recursively calls itself on its children nodes, and calls add external accelerations on each pair of children.
(Nothing is actually computed inside this function: it simply guides the work done in the other function.)

The add external accelerations function checks if its two nodes satisfy the error bound (the bounding radii
are small enough compared to the distance between the centres—where for leaf nodes the bounding radius is 0): if so it
computes the approximate acceleration and stores it at those nodes. Otherwise, it calls itself on the pairs with the smaller of the
two nodes and the children of the larger node.

This recursive computation can be expected to take O(n) time. To see this, assume that at any level of the tree, if there
are k nodes at that level, each node will only need to interact with its O(1) nearest neighbours in space (since more distant
nodes will have been taken care of at higher levels with the cluster approximation). Thus the work is linear in the number of
nodes in the tree, which is O(n).

When these functions finish, they will have left accelerations computed at the highest level nodes where it was accurate
enough—but yet not accumulated at the points. One final traversal of the tree starting at the root adds up the accelerations along
each path down the tree to get the acceleration of each point in O(n) time.

At the end of this, asymptotically the most expensive step may be constructing the tree in the first place, which naı̈vely
takes O(n log n) time. However, various techniques may be applied to speed this up as well.

4



6 The Matrix Perspective

Another enlightening perspective on the problem can be seen as trying to quickly compute the dense matrix-vector product
A = PM , where A is the vector of accelerations, M is the vector of masses, and P is matrix filled with terms like Pij =
−(~xi − ~xj)/‖~xi − ~xj‖3. Barnes-Hut and variants essentially replace large blocks of P (corresponding to clusters) with rank-1
outer-product approximations which can be multiplied in linear rather than quadratic time.

7 The Fast Multipole Method

Whereas higher accuracy is achieved in Barnes-Hut by tightening the maximum allowed ratio between cluster size and distance,
the Fast Multipole Method (FMM) takes a different tack. Instead more terms in the Taylor series are used. In this specific case
the terms are called “poles”—the first term is the monopole, the second term a dipole, the third term a quadrapole, and all terms
generically multipoles, , following the usage in complex analysis. If enough terms are taken, the error can be driven to below
round-off for any two clusters with some finite separation between them. From the matrix perspective, this amounts to using
higher rank approximations to blocks—similar to how the SVD can be used to approximate a given matrix (though here the
basis vectors involved in the low-rank approximation are determined analytically, not with an eigenproblem).

The FMM further changes things around by getting rid of the tree structure and instead laying down a uniform grid, and
using the centre of each grid cell to base the expansion instead of the centre of mass of the points inside. Assuming O(1) points
per grid cell, the forces due to points internal to a grid cell or in neighbouring grid cells take O(n) time. The remaining O(n2)
pairs (interactions between separated grid cells) can be accelerated in a different way, exploiting the regularity of the grid and
calls to the O(n log n) Fast Fourier Transform—but fully working this out is beyond the scope of this course.

5


