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Notes

! Final exam: December 10, 10am-1pm
                    X736 (CS Boardroom)

! Another extra class this Friday 1-2pm
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Other implicit methods

! Implicit mid-point

! Trapezoidal rule

! A-stable, but only conditionally monotone
• Trapezoidal rule: 1/2 step of FE, 1/2 step of BE

• Implicit mid-point:  very closely related

! Aliasing on imaginary axis
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Even more

! Implicit multistep methods:

Adams(-Bashforth)-Moulton

Backwards Differentiation Formula (BDF)

! Implicit Runge-Kutta
• Might need to solve for multiple intermediate

values simultaneously…
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Solving Nonlinear Equations

! First in 1D:    g(x)=0
• Bisection

• Secant method
• Newton!s method

! General case:  g and x both n-dimensional
• Newton is the standard

! More can go wrong (than in optimization)
• E.g. Jacobian can be unsymmetric

! Similar robustifying tricks apply
• Modifying the Jacobian, line search, …

! Convergence is simpler to identify!
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Newton applied to BE

! Initial guess:
• At least use previous y

• Can even use an explicit method to predict y
! For a single step, stability might not be a problem

! Iteration:
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Extra options

! Semi-implicit methods, “lagging”
• Run a single step of Newton

• Equivalently, linearize around current y, solve
linear problem for next y

• Linear stability analysis unchanged, but
practice suggests not as robust
(e.g. mass-spring problem)

! If Newton fails to converge, try again with
smaller time step
• Equations become easier to solve
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F=ma

! Not always a good thing to reduce
2nd order equations to 1st order system

! Example: “symplectic Euler”
or “velocity Verlet”
(naming is still a bit mixed up)

! If acceleration depends on velocity, may need to
go implicit to retain second order accuracy
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Example problem: gravity

! Take n point masses (“n-body problem”)

! Force between two points:

! Total force on a point: sum of forces from
all (n-1) other points

! Big bottleneck: O(n2) work to simply
evaluate acceleration
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Fast approximation

! A cluster of points far away can be
approximated as a single point at the
centre of mass

! How accurate?


