
1cs542g-term1-2007

Notes

! Final exam: December 10, 10am-1pm
 X736 (CS Boardroom)

! Another extra class this Friday 1-2pm

2cs542g-term1-2007

Other implicit methods

! Implicit mid-point

! Trapezoidal rule

! A-stable, but only conditionally monotone
• Trapezoidal rule: 1/2 step of FE, 1/2 step of BE

• Implicit mid-point: very closely related

! Aliasing on imaginary axis

yn+1 = yn + !t f 1

2
yn +

1

2
yn+1,tn+ 12()

yn+1 = yn + !t 1

2
f yn ,tn() + 1

2
f yn+1,tn+1()"# $%

3cs542g-term1-2007

Even more

! Implicit multistep methods:

Adams(-Bashforth)-Moulton

Backwards Differentiation Formula (BDF)

! Implicit Runge-Kutta
• Might need to solve for multiple intermediate

values simultaneously…

4cs542g-term1-2007

Solving Nonlinear Equations

! First in 1D: g(x)=0
• Bisection

• Secant method
• Newton!s method

! General case: g and x both n-dimensional
• Newton is the standard

! More can go wrong (than in optimization)
• E.g. Jacobian can be unsymmetric

! Similar robustifying tricks apply
• Modifying the Jacobian, line search, …

! Convergence is simpler to identify!

5cs542g-term1-2007

Newton applied to BE

! Initial guess:
• At least use previous y

• Can even use an explicit method to predict y
! For a single step, stability might not be a problem

! Iteration:

y
(k)

+ !y = yn + !t f y
(k)
,tn+1() +

"f y
(k)
,tn+1()

"y
!y

#

$
%

&

'
(

I) !t
"f
"y

#
$%

&
'(
!y = yn + !t f y

(k)()) y(k)

6cs542g-term1-2007

Extra options

! Semi-implicit methods, “lagging”
• Run a single step of Newton

• Equivalently, linearize around current y, solve
linear problem for next y

• Linear stability analysis unchanged, but
practice suggests not as robust
(e.g. mass-spring problem)

! If Newton fails to converge, try again with
smaller time step
• Equations become easier to solve

7cs542g-term1-2007

F=ma

! Not always a good thing to reduce
2nd order equations to 1st order system

! Example: “symplectic Euler”
or “velocity Verlet”
(naming is still a bit mixed up)

! If acceleration depends on velocity, may need to
go implicit to retain second order accuracy

v
n+ 1

2

= v
n! 1

2

+ "ta x
n()

x
n+1

= x
n
+ "tv

n+ 1
2

8cs542g-term1-2007

Example problem: gravity

! Take n point masses (“n-body problem”)

! Force between two points:

! Total force on a point: sum of forces from
all (n-1) other points

! Big bottleneck: O(n2) work to simply
evaluate acceleration

!
fij = !G

mimj

!
xi !
!
x j

3

!
xi !
!
x j()

9cs542g-term1-2007

Fast approximation

! A cluster of points far away can be
approximated as a single point at the
centre of mass

! How accurate?

