
1cs542g-term1-2007

Notes

! Notes for last part of Oct 11 and all of Oct 12
lecture online now

! Another extra class this Friday 1-2pm

2cs542g-term1-2007

Adams-Bashforth

! Adams-Bashforth family are examples of
linear multistep methods
• Linear: the new y is a linear combination of y!s and f!s

• Multistep: the new y depends on several old values

! Efficient
• Can get high accuracy with just one evaluation of f

per time step

• Can even switch order/accuracy as you go

! Reasonably stable
• AB3 and higher include some of the imaginary axis

! Rephrased as a “multivalue method”, can easily
accommodate variable time steps…

3cs542g-term1-2007

Adams-Bashforth Stability

! AB1-4

! Note:
gets
smaller
with
increasing
order…

4cs542g-term1-2007

Starting Up

! Problem: how do you get a multistep method
started?
• Without sacrificing global accuracy

! Need an alternate approach to high order,
single-step methods

! Classic example: Runge-Kutta (RK) methods

! Extra information comes from additional
evaluations of f, not old values
• Avoiding old (and thus distant) data helps for stability

and magnitude of truncation error too…

• RK is thus very popular on its own merits

5cs542g-term1-2007

Example Runge-Kutta Methods

! Forward Euler

! Heun!s method (predictor/corrector) RK2
• Based on trapezoidal rule for integration…

! Midpoint RK2
• Based on midpoint rule for integration…

y
(1)
= yn + !t f yn ,tn()

yn+1 = yn + !t 1
2
f yn ,tn() + f y

(1)
,tn+1()()

y
n+ 12

= yn +
!t

2
f yn ,tn()

yn+1 = yn + !t f y
n+ 12
,t
n+ 12

()
6cs542g-term1-2007

Finding RK methods

! Often described by how many evaluations
(“stages”) and order of accuracy
• Usually not uniquely determined though

–"many, many RK methods out there

! Generally finding “optimal” methods
(minimum # stages for given accuracy)
is an unsolved problem

! Several standard schemes exist out there

7cs542g-term1-2007

Classic RK4

! Probably the most widely used higher
order time integration scheme

k
1
= !t f yn ,tn()

k
2
= !t f yn +

1

2
k
1
,t
n+ 12

()
k
3
= !t f yn +

1

2
k
2
,t
n+ 12

()
k
4
= !t f yn + k3,tn+1()

yn+1 = yn +
1

6
k
1
+ 2k

2
+ 2k

3
+ k

4()
8cs542g-term1-2007

Runge-Kutta Stability

! Forward Euler

! 2-stage RK2

! 3-stage RK3

! 4-stage RK4

! Can trade
accuracy
for stability…

9cs542g-term1-2007

Adaptive time steps

! General idea: take large time steps where
solution is smooth
• Truncation error is

! Example approach:
• Use p!th and p+1!st order integrators

• Difference estimates error of p!th order scheme

• Modify #t for next time step to attempt to keep error
per unit time constant

• N.B.: use p+1!st order answer to go forward…

! Runge-Kutta-Fehlberg (RKF) pairs:
can sometimes reuse much of computation of
p!th method to get p+1!st method

O !t p
" p
y

"t p
#
$%

&
'(

10cs542g-term1-2007

Looking at error

! Heuristic error control isn!t guaranteed!

! Usual validation approaches:
• Test your method on a known exact solution

• Test your method against real experimental
data (modeling error also included)

• Run solver multiple times, with smaller and
smaller time steps
! Plot error against #t

! Look at ratio of error when #t halved

11cs542g-term1-2007

Stiffness

! Things may go wrong however!

! Simple example:

! Forward Euler stability restriction:
 always need #t < 0.002

! First order accuracy:
 for t>0.05, can use gigantic #t

! Problem is stiffness: stability of method requires
much smaller time step than accuracy demands

! So far we can!t efficiently solve stiff problems

dy

dt
= 1!1000 y ! t(), y 0() = 1

12cs542g-term1-2007

Stiffness analyzed

! Usually results from hugely different
time-scales in the problem

! Linear example:

! The “fast” mode may be transient–quickly
decays to zero–so the “slow” mode
determines truncation error

! But the “fast” mode determines stability
time step restriction

dy

dt
=

!100

!0.01

"

#
$

%

&
' y

13cs542g-term1-2007

Reversing time

! Consider ! with positive real part
! Unstable when going forwards in time

(and FE etc. are similarly unstable,
particularly for big time steps)

! Now, reverse time
• Exponential growth, in reverse, is stable

exponential decay

• Reversed methods are stable!

! Equivalent to regular time, ! with negative
real part

14cs542g-term1-2007

Backwards Euler

! Backwards Euler: reverse version of FE

! This is an implicit method:
new y defined implicitly (appears on both sides)

! Methods from previous slides are all explicit:
new y explicitly computed from known values

! Going implicit is the key to handling stiffness

yn+1 = yn + !t f yn+1,tn+1()

15cs542g-term1-2007

Other implicit methods

! Backwards Euler is over-stable:

! A-stable: region of stability includes left
half-plane (stable when exact solution is)

! Implicit mid-point

! Trapezoidal rule

1! "#t > 1

yn+1 = yn + !t f 1

2
yn +

1

2
yn+1,tn+ 12()

yn+1 = yn + !t 1

2
f yn ,tn() + 1

2
f yn+1,tn+1()"# $%

16cs542g-term1-2007

Even more

! Implicit multistep methods:

Adams(-Bashforth)-Moulton

Backwards Differentiation Formula (BDF)

! Implicit Runge-Kutta
• Might need to solve for multiple intermediate

values simultaneously…

