
1cs542g-term1-2007

Notes

2cs542g-term1-2007

Meshing goals

! Robust: doesn!t fail on reasonable
geometry

! Efficient: as few triangles as possible
• Easy to refine later if needed

! High quality: triangles should be
“well-shaped”
• Extreme triangles make for poor performance

of FEM - particularly large obtuse angles

3cs542g-term1-2007

A few approaches

! Multiblock methods:
• If you can mesh simple parts (conformal mapping),

decompose region into block to mesh…
• Hard to handle general geometry!

! Advancing front:
start at boundary, work inwards
• Can give very high quality near boundary, fast

• Can run into problems when fronts meet…

! Tile-based approach:
tile space regularly, cut out geometry
• Can give optimal quality in the interior, fast

• But can run into problems at the boundary…

! Delaunay
4cs542g-term1-2007

Delaunay triangulation

! Given n points {xi} mesh convex hull with
triangles

! Triangles localized in the following sense:
the circumcircle of each triangle is empty

! Dual of Voronoi diagram
• Voronoi region for point xi: set of all points closer to xi

than any other point

• Dual: “rotate” edges, faces become points, points
become faces

• Circumcentres are points where three or more
Voronoi regions meet

5cs542g-term1-2007

Nice things about Delaunay

! Always exists
• Unique up to choice of chords in a polygon

inscribed in a circle
(degenerate Voronoi Diagram)

! Easiest triangulation (in some sense) to
construct: O(n log n) or better algorithms

! Maximizes minimum angle
• Not the best guarantee of quality, but useful

6cs542g-term1-2007

Algorithms

! Incremental insertion:
• Begin with one big triangle containing all

points (deleted at the end)

• Add points one by one, maintaining Delaunay
property

• Each new point many modify nearby triangles:
use a tree to accelerate point location

! Divide-and-conquer
• Split point set in half

• Triangulate each half recursively

• Sew two halves together



7cs542g-term1-2007

Lawson’s edge-flipping algorithm

! One particular incremental algorithm

! To insert a new point p:
• Find triangle containing p

• Add p by dividing triangle in three

• “Flip” edges that violate Delaunay property:
is p in the circumcircle of adjacent triangles?
If so: flip edge, check newly adjacent triangles

8cs542g-term1-2007

Predicates

! Major problem: degenerate triangles
• E.g. if boundary contains straight edges

! Floating-point rounding can kill the
algorithm

! Handle by reducing to simplest predicates
possible
• And then either compute exactly, or in a

consistent way

• See Shewchuk!s Triangle code

9cs542g-term1-2007

Delaunay refinement

! Typically we!re only given points on the
boundary (and maybe not even that many)

! Need to add new points

! Chew showed one particularly good strategy is
to add circumcentres of badly shaped triangles
• Maintain priority queue of worst triangles

• Adding circumcentre destroys the triangle, replaces it
with better shaped versions

• On boundary: split edges

! Additionally drive insertion by required “size”
• E.g. coming from error control of PDE

10cs542g-term1-2007

Mesh improvement

! Additionally can postprocess mesh:
• Move nodes to more optimal locations

(if just centroid, called “mesh smoothing”)

• Flip edges to get more balanced valences


