Notes

- Robust: doesn't fail on reasonable geometry
- Efficient: as few triangles as possible
 Easy to refine later if needed
- High quality: triangles should be "well-shaped"
 - Extreme triangles make for poor performance of FEM particularly large obtuse angles

cs542g-term1-2007 2

A few approaches

Multiblock methods:

- If you can mesh simple parts (conformal mapping), decompose region into block to mesh...
- Hard to handle general geometry!
- Advancing front:
 - start at boundary, work inwards
 - Can give very high quality near boundary, fast
 - Can run into problems when fronts meet...

• Tile-based approach:

- tile space regularly, cut out geometry
- Can give optimal quality in the interior, fast
- But can run into problems at the boundary...
- Delaunay

cs542g-term1-2007 3

cs542g-term1-2007

Delaunay triangulation

- Given n points {x_i} mesh convex hull with triangles
- Triangles localized in the following sense: the circumcircle of each triangle is empty
- Dual of Voronoi diagram
 - Voronoi region for point x_i set of all points closer to x_i than any other point
 - Dual: "rotate" edges, faces become points, points become faces
 - Circumcentres are points where three or more Voronoi regions meet

cs542g-term1-2007

Nice things about Delaunay

- Always exists
 - Unique up to choice of chords in a polygon inscribed in a circle (degenerate Voronoi Diagram)
- Easiest triangulation (in some sense) to construct: O(n log n) or better algorithms
- Maximizes minimum angle
 - Not the best guarantee of quality, but useful

- Incremental insertion:
 - Begin with one big triangle containing all points (deleted at the end)
 - Add points one by one, maintaining Delaunay property
 - Each new point many modify nearby triangles: use a tree to accelerate point location
- Divide-and-conquer
 - Split point set in half
 - Triangulate each half recursively
 - Sew two halves together

Lawson's edge-flipping algorithm

- One particular incremental algorithm
- To insert a new point p:
 - Find triangle containing p
 - Add p by dividing triangle in three
 - "Flip" edges that violate Delaunay property: is p in the circumcircle of adjacent triangles? If so: flip edge, check newly adjacent triangles

Predicates

- Major problem: degenerate triangles
 E.g. if boundary contains straight edges
- Floating-point rounding can kill the algorithm
- Handle by reducing to simplest predicates possible
 - And then either compute exactly, or in a consistent way
 - See Shewchuk's Triangle code

cs542g-term1-2007 8

Delaunay refinement

- Typically we're only given points on the boundary (and maybe not even that many)
- Need to add new points
- Chew showed one particularly good strategy is to add circumcentres of badly shaped triangles
 - Maintain priority queue of worst triangles
 - Adding circumcentre destroys the triangle, replaces it with better shaped versions
 - On boundary: split edges
- Additionally drive insertion by required "size"
 - E.g. coming from error control of PDE

cs542g-term1-2007 9

cs542g-term1-2007

7

Mesh improvement

- Additionally can postprocess mesh:
 - Move nodes to more optimal locations (if just centroid, called "mesh smoothing")
 - · Flip edges to get more balanced valences

cs542g-term1-2007 10