
1cs542g-term1-2007

Notes

! Make-up lecture tomorrow 1-2, room 204

2cs542g-term1-2007

Linear basis in 1D

! From last-time, the equation for test function i
was:

! Can match up left-hand-side (matrix) to finite
difference approximation

! Right-hand-side is a bit different:

1

x
i+1

! x
i
ui+1 !

1

x
i+1

! x
i
+

1

x
i
! x
i!1

()ui + 1

x
i
! x
i!1
ui!1 = f (x)"i (x)dx#

f (xi) vs. f (x)!i (x)dx"

3cs542g-term1-2007

The Mass Matrix

! Assuming f is from the same space, get:

! M is called the mass matrix

• Obviously symmetric, positive definite

! In piecewise linear element case,
tridiagonal

f!i" = f j! j !i
j=1

n

#" = !i! j"() f j
j=1

n

= Mf()
i

4cs542g-term1-2007

Lumped Mass Matrix

! The fact that M is not diagonal can be
inconvenient
• E.g. if solving a time-dependent PDE, M multiplies the

time derivative - so even an “explicit” method requires
solving linear systems

• Can be viewed as a low-pass / smoothing filter of the
data, which may not be desired

! Thus often people will “lump” the offdiagonal
entries onto the diagonal: lumped mass matrix
(versus “consistent” mass matrix)

! This makes the connection with finite differences
(for piecewise linear elements) perfect

5cs542g-term1-2007

Stiffness matrix

! The matrix A (where derivatives show up)
is called the stiffness matrix

• “Stiffness” and “mass” come from original
FEM application, simulating solid mechanics

6cs542g-term1-2007

Assembling matrices

! Entry of the stiffness matrix:

! Here we sum over “elements” e where basis
functions i and j are nonzero
• Usually an “element” is a chunk of the mesh, e.g. a

triangle

! Can loop over elements, adding contribution to
A for each
• Each contribution is a small submatrix:

the local (or element) stiffness matrix
• A is the global stiffness matrix

• Process is called assembly

A

Aij = !"i i!" j

#
$ = !"i i!" j

e$
e

%

7cs542g-term1-2007

Quadrature

! Integrals may be done analytically for simple
elements
• E.g. piecewise linear

! But in general it!s fairly daunting –"or impossible
(e.g. curved elements)

! Can tolerate some small error:
numerically estimate integrals = quadrature

! Basic idea: sample integrand at quadrature
points, use a weighted sum
• Accuracy: make sure it!s exact for polynomials up to a

certain degree

8cs542g-term1-2007

FEM convergence

! Let the exact solution be

and for a given finite element space V let the
numerical solution be

! Galerkin FEM for Poisson is equivalent to:

(closest in a least-squares, semi-norm way)

u
!

u !V

u = argmin
u!V

" u # u$()
2

%
&

9cs542g-term1-2007

FEM convergence cont’d

! Don!t usually care about this semi-norm:
want to know error in a regular norm.
With some work, can show equivalence…

! The theory eventually concludes:
for a well-posed problem,
accuracy of FEM determined by how close
function space V can approximate solution

! If e.g. solution is smooth, can approximate
well with piecewise polynomials…

10cs542g-term1-2007

Some more element types

! Polynomials on triangles etc.

! Polynomials on squares etc.

! More exotic:
• Add gradients to data

• “Non-conforming” elements

• Singularity-matching elements

• Mesh-free elements

11cs542g-term1-2007

Mesh generation

! Still left with problem: how to generate the
underlying mesh (for usual elements)

! More or less solved in 2D,
still heavily researched in 3D

! Triangles/tetrahedra much easier than
quads/hexahedra

! We!ll look at one particular class of
methods for producing triangle meshes:
Delaunay triangulation

12cs542g-term1-2007

Meshing goals

! Robust: doesn!t fail on reasonable
geometry

! Efficient: as few triangles as possible
• Easy to refine later if needed

! High quality: triangles should be
“well-shaped”
• Extreme triangles make for poor performance

of FEM - particularly large obtuse angles

