
cs542g Final Exam
December 10, 2007

Attempt all questions. Partial marks will be awarded for demonstrating under-
standing of the relevant material even if you can’t fully solve the problem.

1. .

The thin-plate spline radial basis function in 2D is r2 log r. This formula is
undefined at r = 0; assuming the routine for computing log r has good relative
accuracy, is it safe to rely on this formula for r very small but positive? What
problem could you run across, and how might you fix it?

Suggested solution: Multiplication also has good relative error, so multiplying
out r2 log r will similarly have good relative error. Using ε as a bound on the
relative error, we have

computed(r · r · log r) = r(1 + ε1) · r(1 + ε2) log r(1 + ε3)
≈ r2 log r(1 + 3ε)

The relative error of the result should be about three times larger (worst case)
then the relative error of each individual operation. Therefore this is safe, with
the one proviso that for extremely small r the quantity r2 might underflow even
though r2 log r is large enough to be represented accurately: making sure to
evaluate it as r(r log r) makes it entirely safe.

2. .

Prove how you can get the 2-norm condition number of a general square matrix
from its SVD.

Suggested solution: Recall the 2-norm condition number of A is κ2(A) =
‖A‖2‖A−1‖2. The 2-norm of A can be retrieved from the SVD A = UΣV T as
follows:

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

‖UΣV T x‖2

But since U and V are orthogonal matrices, which means they don’t change the
2-norm of a vector, substituting x = V y in the max reduces this to:

‖A‖2 = max
‖y‖2=1

‖Σy‖2

Since Σ is diagonal, and assuming the largest singular value comes first, it’s easy
to see the max is achieved when y = (1, 0, . . . , 0)T . So ‖A‖2 = σ1. Similarly, the
SVD of A−1 is just V Σ−1UT (though now in reverse order) giving ‖A−1‖2 =
1/σn, the reciprocal of the smallest singular value. (Of course, if A is not
invertible, this is ∞, which will be fine for the condition number). So κ2(A) =
σ1/σn.

1

3. .

To cut down on the major expense of Newton’s method for optimization, namely
solving a linear system with the Hessian H, you could approximate H as a
diagonal matrix H̄ with H̄ii = Hii and thus make the solve trivial. How might
this impact convergence?

Suggested solution: Obviously if H were diagonal to begin with, this won’t
change anything. More generally it’s harder to be sure. Plugging in a model
quadratic objective function (H constant) for which true Newton would converge
in one step, we see that we are approximating the solution of the linear equation
H∆x = −g with just the diagonal part of H. This is Jacobi iteration, which we
have seen may only converge at a linear rate, or not at all. On the other hand,
we can expect this to be an improvement over Steepest Descent, where H is
approximated as just the identity matrix: if nothing else, the proposed method
will usually give a natural step size which Steepest Descent lacks.

4. .

The following is proposed for solving the second order problem d2x/dt2 = a(x):

vn+1 = vn + ∆t a(xn)

xn+1 = xn + ∆t
vn + vn+1

2

Is this an implicit or an explicit method? How accurate is it? How stable is it?

Suggested solution: The velocity step is purely explicit, and while you could
argue the position step is implicit since it uses the new velocity, it is basically
explicit since this can be reduced to:

xn+1 = xn + ∆tvn +
1
2
∆t2a(xn)

In this form it’s eeasy to identify the Taylor series: the local truncation error
for velocity is second order, and for position is third order. The global errors
should be one less, first and second respectively—you could argue that this
method should be labeled as either.

To test stability, linearize the equation: replace a(x) with −kx. (From class, we
can expect k real and positive for stable dynamics.) Plugging this in gives

vn+1 = vn −∆tkxn

xn+1 = xn + ∆tvn −
1
2
∆t2kxn

or in matrix-vector form:(
v
x

)
n+1

=
(

1 −∆tk
∆t 1− 1

2∆t2k

) (
v
x

)
n

2

Therefore the full solution at time step n is:(
v
x

)
n

=
(

1 −∆tk
∆t 1− 1

2∆t2k

)n (
v0

x0

)
Stability depends on whether the eigenvalues of this 2× 2 matrix are bounded
by 1 in magnitude. However, their product (the determinant of the matrix) is
1− 1

2∆t2k, which is always greater than 1, so at least one eigenvalue must have
magnitude larger than 1. Therefore the method is unconditionally unstable.

5. .

Consider taking a 2D regular grid, and solving the Poisson equation on it. Write
down the simplest 2nd order accurate central finite difference scheme. If you
split each grid square into two triangles by adding a diagonal, thus getting a
triangle mesh, show that the stiffness matrix from Galerkin FEM with the usual
continuous piecewise linear basis functions on that mesh is the same as the finite
difference matrix up to a constant factor.

Suggested solution: The usual finite difference discretization for ∇ · ∇u = f
is:

ui+1,j + ui, j + 1− 4ui,j + ui,j−1 + ui−1,j

∆x2
= fi,j

ignoring boundary conditions. The stencil connects grid point (i, j) just to its
four nearest neighbours.

Define basis functions φi,j(x, y) so that φi,j is 1 at grid point (i, j) and zero
at others, and is linear within each triangle. The Galerkin stiffness matrix has
an entry corresponding to the row of grid point (i, j) and column of grid point
(k, l) of:

A(i,j),(k,l) =
∫
∇φi,j · ∇φk,l

Just from the support of each basis function, this is zero if (i, j) and (k, l) are
not connected by a mesh edge. However, we might have a nonzero offdiagonal
when they are connected by a diagonal edge—say (k, l) = (i + 1, j + 1)—which
is not present in the finite difference scheme.

Observe that since the φ are linear in each triangle, ∇φ is just a constant vector
in each triangle. In a triangle where φi,j is nonzero, its gradient obviously
points towards corner (i, j) and must be perpendicular to the opposite edge
(since φi,j is a constant zero along that edge, and the gradient of a function is
perpendicular to its isocontours). It’s easy to see then that if (i, j) and (k, l) are
only connected by a diagonal, their gradients are always perpendicular—hence
the corresponding term in A is zero.

Therefore the stiffness matrix has the same nonzero pattern as the finite differ-
ence scheme. From symmetry, the offdiagonal entries in each row are all equal,

3

just like the finite difference scheme. Finally, if you multiply the stiffness matrix
by the vector of all ones, which means integrating ∇φ · ∇1 = 0, we get zero:
therefore the sum of each row of A is zero, just like the finite difference scheme.
So up to some constant factor which we won’t bother computing, the matrices
are the same.

4

