
Example Solutions
cs542g Final Exam
December 5, 2006

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In some cases the Moving Least-Squares (MLS) approximation to scattered data
points is undefined. Describe when this can happen.

One possible solution is to use the pseudo-inverse of the least-squares matrix
involved. Another possible solution is to dynamically adjust the width of the
kernel to include k sample points for some suitably large and fixed k: i.e. to get
the estimate at point x, weights W (α|x − xi|) are used for sample points xi,
with α chosen so that at least k weights are nonzero. Discuss the relative
merits of these two possibilities.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MLS is undefined when the least-squares problem is underdetermined: for ex-
ample, if not enough points are within the support of the kernel function, or
the points are arranged in a degenerate geometry (e.g. all on a line) that cause
rank-deficiency in the matrix.

Using the pseudo-inverse will select a minimum norm solution in all of these
cases, giving an interpolant defined everywhere, but at the expense of having to
compute it (perhaps using the SVD, considerably more expensive than solving
a well-posed linear least-squares problem). The pseudo-inverse can also cause
discontinuities in the interpolant: e.g. far enough away from the data points, it
jumps to zero (when A = 0).

Adjusting the width of the kernel protects against some break-downs (not
enough sample points) but not all (if all k points are on a line, the matrix
can still be rank-deficient). It also may be somewhat expensive to determine
the radius requried (the k nearest-neighbour problem).

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The PDE ∂u
∂t + ∂u

∂x = 0 for time t > 0 and one-dimensional space x is first
discretized in space with one-sided finite differences as:(

∂u

∂t

)
j

= −uj+1 − uj

∆x

What are the eigenvalues of the Jacobian? (hint: with boundary condi-
tions unspecified, the eigenvectors are of the form vj = eiζj where i =

√
−1 and

ζ is a real constant) What sort of time integration scheme will stably

1



converge? Would you suggest any changes to the spatial discretiza-
tion?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Plugging in the suggested eigenvector to the finite difference expression to find
the eigenvalue gives:

−vj+1 − vj

∆x
= λvj

− 1
∆x

(eiζ(j+1) − eiζj) = λeiζj

− 1
∆x

(eiζ − 1) = λ

Writing out λ in terms of its real and imaginary parts gives:

λ =
1− cos ζ

∆x
− i

sin ζ

∆x

Note that this means <(λ) ≥ 0: we cannot hope for a stable convergent solution,
no matter the time integration scheme, because even exact integration gives
exponentially increasing solutions.

The problem is that the spatial discretization is “down-winded”: one-sided but
only letting information flow the wrong way (opposite the actual flow of infor-
mation in the PDE). The CFL condition will never be met. Switching to an
up-wind difference such as −(ui − ui−1)/∆x solves this issue.

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The heat equation ∂u
∂t = ∆u is to be solved using standard second order finite

differences in space on a large 3D uniform grid. A massively parallel architecture
is used, whose communication costs mean the best available solver for linear sys-
tems is Jacobi iteration. Discuss the relative merits between an explicit
time integration scheme and an implicit scheme for this problem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The critical question is how expensive is it to get a solution of desired accuracy
at some final time T . Note that roughly the same amount of work is incurred in
an evaluation of an explicit method as in one iteration of Jacobi, so we can use
number of steps (explicit) or number of total iterations (implicit) as our gauge
of cost.

Let A be the matrix representing the second-order accurate finite difference ap-
proximation of ∆ in 3D. It’s not hard to see the eigenvalues are negative and real,
and range between λmax = −O(1/∆x2) (with a checkerboard-like eigenvector:

2



vijk = (−1)i+j+k) and λmin = −O(1) (with a very smooth eigenvector). For
example, on a square domain with Dirichlet boundary conditions, the Fourier
modes are the eigenvectors and these eigenvalues are apparent.

For a typical explicit method, such as Runge-Kutta or multi-step methods, the
stability time restriction is then ∆t < O(∆x2), based on requiring |λmax∆t| <
O(1). Beyond the scope of this course, but even for some specialty explicit
methods along the lines of Dufort-Frankel (which are unconditionally stable)
the CFL condition will require that ∆t approaches zero faster than ∆x for
convergence: there too we can expect to require O(n2) time steps.

For an implicit method, such as Backwards Euler or BDF methods, an arbitrar-
ily large time step can be taken stably, with the need to solve a system of linear
equations of the form (I −O(∆t)A)x = b. (For Backwards Euler, the matrix is
precisely I −∆tA.) Similar eigenvector analysis shows that the spectral radius
(i.e. maximum eigenvalue) of the Jacobi iteration matrix here is

ρ = O

(
1

1 + ∆t/∆x2

∆t

∆x2
(1− 1/n2)

)
To get reasonable convergence for Jacobi, O(−1/ log ρ iterations must be taken.
This can be approximated as

−1
log ρ

∼ −1

log
(

1−1/n2

1+∆x2/∆t

)
=

1
log(1 + ∆x2/∆t)− log(1− 1/n2)

∼ 1
∆x2/∆t + 1/n2

∼ n2

1 + 1/∆t

Multiplying this by O(1/∆t) time steps gives a total work of O(n2) iterations.
If a large time step is used, lots of Jacobi iterations per step are required; if a
small time step is used, only a few are needed per step; no matter what ∆t you
pick it balances out to O(n2) iterations total.

Thus asymptotically, implicit and explicit methods require the same amount of
work in this case! Without knowing the constants hidden in the O() notation,
which would require detailed timings of different methods on the hardware, one
might as well then use a simpler explicit method which will probably have a
smaller time truncation error.

3



4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the linear least squares problem minx ||Ax−b||2 when A is large, sparse,
and nearly rank-deficient. The QR decomposition is selected for solution. How
might you go about exploiting sparsity to improve the computational
efficiency? (hint: what is R in terms of AT A?) What is the impact of one
fully dense column in A? What is the impact of one fully dense row
in A?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Any of the algorithms we considered (Modified Gram-Schmidt, Householder,
and Givens) can be implemented in “sparse” mode (i.e. only storing nonzeros).
However, fill-in during the factorization can be problematic. Storing the Q part
implicitly as a sequence of Householder or Givens matrices eliminates questions
of needless fill-in for Q. The R part is just the transpose of the Cholesky factor
of AT A (since AT A = RT QT QR = RT R) and thus fill-reducing orderings of
AT A can be applied to permute the columns of A to reduce fill in R.

One fully dense column of A, as can readily be seen by looking at the MGS
definition of QR (even if that is not how we compute it), causes R to be fully
dense to the right of that column. Thus we certainly want to order those columns
last.

One fully dense row of A causes AT A to be fully dense, and thus (unless we
have spectacularly lucky cancellations) R will be dense no matter what we do.
As an advanced solution (well beyond the extent of this course) one could view
this as a low rank perturbation from a sparse Â (that is, A without the dense
row), and from the sparse QR factorization of Â and the Sherman-Morrison
formula for how low rank perturbations perturb the inverse of a matrix derive
an efficient solution method.

4


