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High Dimensional Data

! So far we!ve considered scalar data values fi (or
interpolated/approximated each component of
vector values individually)

! In many applications, data is itself in high
dimensional space
• Or there!s no real distinction between dependent (f)

and independent (x) -- we just have data points

! Assumption: data is actually organized along a
smaller dimension manifold
• generated from smaller set of parameters than

number of output variables

! Huge topic: machine learning

! Simplest: Principal Components Analysis (PCA)
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PCA

! We have n data points from m dimensions:
store as columns of an mxn matrix A

! We!re looking for linear correlations
between dimensions
• Roughly speaking, fitting lines or planes or

hyperplanes through the origin to the data

• May want to subtract off the mean value along
each dimension for this to make sense
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Reduction to 1D

! Assume data points fit through a line through the
origin (1D subspace)

! In this case, say line is along unit vector u. (m-
dimensional vector)

! Each data point should be a multiple of u (call
the scalar multiples wi):

! That is, A would be rank-1: A=uwT

! Problem in general: find rank-1 matrix that best
approximates A

A
*i
= uw

i
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The rank-1 problem

! Use Least-Squares formulation again:

! Clean it up: take w=!v with !"0 and |v|=1

" u and v are the first principal components of A

min
u!R

m
, u =1

w!R
n

A " uw
T

F

2

min
u!R

m
, u =1

v!R
n
, v =1

" #0

A $ u"v
T

F

2
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Solving the rank-1 problem

! Remember trace version of Frobenius norm:

! Minimize with respect to sigma first:

! Then plug in to get a problem for u and v:

A ! u"v
T

F

2

= tr A ! u"v
T( )

T

A ! u"v
T( )

= tr A
T
A( ) ! tr AT

u"v
T( ) ! tr v"uT A( ) + tr v"uTu"vT( )

= tr A
T
A( ) ! 2uT Av" +"

2

!

!"
A # u"v

T

F

2

= 0

#2u
T
Av + 2" = 0

" = u
T
Av

min ! u
T
Av( )

2

" max u
T
Av( )

2
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Finding u

! First look at u:

! AAT is symmetric, thus has a complete set of
orthonormal eigenvectors X, eigenvectors mu

! Write u in this basis:

! Then maximizing:

! Obviously pick u to be the eigenvector with
largest eigenvalue

u
T
Av( )

2

= u
T
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T
A
T
u

= u
T
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T( )u

u = û
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X
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u
T
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û
i
X
i

i=1

m

!"#$
%
&'
= µ

i
û
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Finding v

! Write the thing we!re maximizing as:

! Same argument gives v the eigenvector
corresponding to max eigenvalue of ATA

! Note we also have

u
T
Av( )

2

= v
T
A
T
uu

T
Av

= v
T
A
T
A( )v

!
2
= u

T
Av( )

2

= max" AA
T( ) = max" A

T
A( ) = A

2

2
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Generalizing

! In general, if we expect problem to have
subspace dimension k, we want the
closest rank-k matrix to A
• That is, express the data points as linear

combinations of a set of k basis vectors
(plus error)

• We want the optimal set of basis vectors and
the optimal linear combinations:

min
U!R

m"k
,U

T
U = I

W !R
n"k

A #UW
T

F

2
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Finding W

! Take the same approach as before:

! Set gradient w.r.t. W equal to zero:

A !UW
T

F

2

= tr A !UW
T( )

T

A !UW
T( )

= tr A
T
A ! 2 trWU

T
A + trWU

T
UW

T

= A
F

2

! 2 trWU
T
A + W

F

2

!2A
T
U + 2W = 0

W = A
T
U
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Finding U

! Plugging in W=ATU we get

! AAT is symmetric, hence has a complete
set of orthogonormal eigenvectors, say
columns of X, and eigenvalues along the
diagonal of M (sorted in decreasing order):

min A !UW
T

F

2

" min ! 2 tr A
T
UU

T
A + tr A

T
UU

T
A

" max trU
T
AA

T
U

AA
T
= XMX

T
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Finding U cont’d

! Our problem is now:

! Note X and U are both orthogonal, so is XTU,
which we can call Z:

! Simplest solution: set Z=(I 0)T which means that
U is the first k columns of X
(first k eigenvectors of AAT)

max trU
T
XMX

T
U

max
Z
T
Z = I

tr Z
T
MZ

! max
Z
T
Z = I

µ jZ ji

2

j=1

m

"
i=1

k

"
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Back to W

! We can write W=V#T for an orthogonal V, and
square kxk #

! Same argument as for U gives that V should be
the first k eigenvectors of ATA

! What is #?

! From earlier rank-1 case we know

! Since U*1 and V*1 are unit vectors that achieve
the 2-norm of AT and A, we can derive that first
row and column of # is zero except for diagonal.

!
11
= " = A

2
= A

T

2
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What is !

! Subtract rank-1 matrix U*1#11V*1
T from A

• zeros matching eigenvalue of ATA or AAT

! Then we can understand the next part of #

! End up with # a diagonal matrix,
containing the squareroots of the first k
eigenvalues of AAT or ATA (they!re equal)
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The Singular Value Decomposition

! Going all the way to k=m (or n) we get the
Singular Value Decomposition (SVD) of A

! A=U#VT

! The diagonal entries of # are called the singular
values

! The columns of U (eigenvectors of AAT) are the
left singular vectors

! The columns of V (eigenvectors of ATA) are the
right singular vectors

! Gives a formula for A as a sum of rank-1
matrices:

A = !
i
u
i
v
i

T

i

"
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Cool things about the SVD

! 2-norm:

! Frobenius norm:

! Rank(A)= # nonzero singular values
• Can make a sensible numerical estimate

! Null(A) spanned by columns of U for zero
singular values

! Range(A) spanned by columns of V for nonzero
singular values

! For invertible A:

A
2
= !

1
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F
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i
u
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#
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$
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Least Squares with SVD

! Define pseudo-inverse for a general A:

! Note if ATA is invertible, A+=(ATA)-1AT

• I.e. solves the least squares problem]

! If ATA is singular, pseudo-inverse defined:
A+b is the x that minimizes ||b-Ax||2 and of
all those that do so, has smallest ||x||2

A
+
= V!

+
U

T
=

v
i
u
i

T

"
ii=1

" i >0

n

#
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Solving Eigenproblems

! Computing the SVD is another matter!

! We can get U and V by solving the symmetric
eigenproblem for AAT or ATA, but more
specialized methods are more accurate

! The unsymmetric eigenproblem is another
related computation, with complications:
• May involve complex numbers even if A is real

• If A is not normal (AAT$ATA), it doesn!t have a full
basis of eigenvectors

• Eigenvectors may not be orthogonal… Schur decomp

! Generalized problem: Ax=#Bx
! LAPACK provides routines for all these

! We!ll examine symmetric problem in more detail
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The Symmetric Eigenproblem

! Assume A is symmetric and real

! Find orthogonal matrix V and diagonal matrix D
s.t. AV=VD
• Diagonal entries of D are the eigenvalues,

corresponding columns of V are the eigenvectors

! Also put: A=VDVT  or VTAV=D

! There are a few strategies
• More if you only care about a few eigenpairs, not the

complete set…

! Also: finding eigenvalues of an nxn matrix is
equivalent to solving a degree n polynomial
• No “analytic” solution in general for n"5

• Thus general algorithms are iterative


