High Dimensional Data PCA

. _Sct) faro\llv?’\ge/ con%id_ere? zcalirhdgct)a V%Iuestfbgor + We have n data points from m dimensions:
interpolated/approximated ea mponen ;
vector values individually) stor,e as cqlumns Qf an mxn ma'trlx A

« In many applications, data is itself in high + We're looking for linear correlations
dimensional space between dimensions
® Or there’s no real distinction between dependent (f) ; f ;

and independent (x) -- we just have data points ¢ EOUgrhlly rslpe?ﬁ:ng’ fr']ttt'{:g II?e_sn<)tr ?Langstor

+ Assumption: data is actually organized along a yperpianes through the origin 1o the data
smaller dimension manifold * May want to subtract off the mean value along
e generated from smaller set of parameters than each dimension for this to make sense

number of output variables
+ Huge topic: machine learning
+ Simplest: Principal Components Analysis (PCA)
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Reduction to 1D The rank-1 problem

& Assume data points fit through a line through the ¢ Use Least-Squares formulation again:
origin (1D subspace) . H _ T H

+ In this case, say line is along unit vector u. (m- ueglﬁ‘zl A—uw F
dimensional vector) ’

weR"
+ Each data point should be a multiple of u (call T _ : _
the scalar multiples w.): o Clean it up: take w=ov with 620 aznd Ivi=1
A.; = uw, g}iﬁ 1”A B quT”F
ue L=
+ That is, A would be rank-1: A=uw’ veR" [v|=1
+ Problem in general: find rank-1 matrix that best 020

approximates A
v u and v are the first principal components of A
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Solving the rank-1 problem Finding u

+ Remember trace version of Frobenius norm: + First look at u: (uTAv)2 =u" A" A"u
HA*MO'VTHj_ = tr(AfuovT )l (A*MO'VT) T p
=u (AA )u
+ AAT is symmetric, thus has a complete set of
orthonormal eigenvectors X, eigenvectors mu
o Write u in this basis: ,, =Yix,

i=1

= tr(ATA) - tr(ATuGVT)— tr(vGuTA) + tr(vo‘uTquT)
=tr(A"A)-2u" Avo +¢”
+ Minimize with reaspect to sigma first:
—HA —uov’ H2 =0
el F
—2u"Av+20=0 ¢ Then maximizing: ,
. o =uAv u' AA U = (zﬁixij [Znuiﬁixij = z:uiﬁiz
# Then plug in to get a problem for u and v: i=1 i=1 i=1

, 2 2 + Obviously pick u to be the eigenvector with
min—(u"Av) & max(u’Av) largest eigenvalue
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Finding v

+ Write the thing we’re maximizing as:
(uTAv)2 =v'ATuu" Av
=" (ATA)V

+ Same argument gives v the eigenvector
corresponding to max eigenvalue of ATA

+ Note we also have
o’ = (uTAv)2 = maxl(AAT) = maxﬂ.(ATA) = ||A||§
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Finding W

+ Take the same approach as before:
Ja-ow[[ =uw(a-ow") (A-uw")
=trATA- 2 WU A+t WU UW"
= Al —2uwu" A+,
o Set gradient w.r.t. W equal to zero:

2ATU+2W =0
W =A"U
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Finding U cont’d

« Our problem is now:
max trtU" XMX'U

+ Note X and U are both orthogonal, so is XTU,
which we cancall Z: .« tr 7" MZ
7T z=1

k. m

2

A yggzzﬂjzﬁ
i=1 j=1

+ Simplest solution: set Z=(I 0)T which means that
U is the first k columns of X
(first k eigenvectors of AAT)
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Generalizing

« In general, if we expect problem to have
subspace dimension k, we want the
closest rank-k matrix to A
* That is, express the data points as linear
combinations of a set of k basis vectors
(plus error)

* We want the optimal set of basis vectors and
the optimal linear combinations:

2
. T
min HA -UwW H
UeR™  UTu=1 F
WeRnxk
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Finding U

# Plugging in W=ATU we get
min|A-Uw’ |}
F
o min =2tr ATUU"A+tr A"UU" A
o max rtUTAA™U

+ AAT is symmetric, hence has a complete
set of orthogonormal eigenvectors, say
columns of X, and eigenvalues along the
diagonal of M (sorted in decreasing order):

T T
AA = XMX cs542g-term1-2006

Back to W

+ We can write W=V3T for an orthogonal V, and
square kxk >

& Same argument as for U gives that V should be
the first k eigenvectors of ATA
o Whatis > ?
« From earlier rank-1 case we know
2,=0= ||A||2 = HATH2
+ Since U.; and V., are unit vectors that achieve

the 2-norm of AT and A, we can derive that first
row and column of Y is zero except for diagonal.
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What is >

# Subtract rank-1 matrix U.;>,,V.,T from A
® zeros matching eigenvalue of ATA or AAT
¢ Then we can understand the next part of >

« End up with 3 a diagonal matrix,
containing the squareroots of the first k
eigenvalues of AAT or ATA (they’re equal)
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Cool things about the SVD

13

o+ 2-norm: [A], =0,
o Frobenius norm:  |A|. =0} +--+0?
+ Rank(A)= # nonzero singular values

* Can make a sensible numerical estimate

« Null(A) spanned by columns of U for zero
singular values

+ Range(A) spanned by columns of V for nonzero
singular values

o Forinvertible A: A™' =V 'U"

n T
-3
i=1 O-i
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Solving Eigenproblems
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o Computing the SVD is another matter!

¢ WecangetUandV b1y solving the symmetric
eigenproblem for AAT or ATA, but more
specialized methods are more accurate

¢ The unsymmetric eigenproblem is another
related computation, with complications:
* May involve complex numbers even if A is real

¢ |f A is not normal (AATzATA), it doesn’t have a full
basis of eigenvectors

® Eigenvectors may not be orthogonal... Schur decomp
+ Generalized problem: Ax=XBx
+ LAPACK provides routines for all these
+ We’'ll examine symmetric problem in more detail
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The Singular Value Decomposition

+ Going all the way to k=m (or n) we get the
Singular Value Decomposition (SVD) of A

o A=USVT

+ The diagonal entries of 3 are called the singular
values

+ The columns of U (eigenvectors of AAT) are the
left singular vectors

+ The columns of V (eigenvectors of ATA) are the
right singular vectors

¢ Gives a formula for A as a sum of rank-1
matrices:
A= Zoyuivf
i
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Least Squares with SVD

+ Define pseudo-inverse for a general A:

A v = 3
-1 0;
;>0
+ Note if ATA is invertible, A*=(ATA)'AT
¢ |.e. solves the least squares problem]
o If ATA is singular, pseudo-inverse defined:
A*b is the x that minimizes Ilb-Axll, and of

all those that do so, has smallest lIxll,
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The Symmetric Eigenproblem

o Assume A is symmetric and real
+ Find orthogonal matrix V and diagonal matrix D
s.t. AV=VD

* Diagonal entries of D are the eigenvalues,
corresponding columns of V are the eigenvectors

+ Also put: A=VDVT or VTAV=D
+ There are a few strategies
* More if you only care about a few eigenpairs, not the
complete set...
+ Also: finding eigenvalues of an nxn matrix is
equivalent to solving a degree n polynomial
* No “analytic” solution in general for n=5
® Thus general algorithms are iterative
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