
1cs542g-term1-2006

Notes

! Assignment 1 is out (due October 5)

! Matrix storage: usually column-major

2cs542g-term1-2006

Block Approach to LU

! Rather than get bogged down in details of
GE (hard to see forest for trees)

! Partition the equation A=LU

! Gives natural formulas for algorithms

! Extends to block algorithms

3cs542g-term1-2006

Cholesky Factorization

! If A is symmetric positive definite, can cut
work in half: A=LLT

• L is lower triangular

! If A is symmetric but indefinite, possibly
still have the Modified Cholesky
factorization: A=LDLT

• L is unit lower triangular

• D is diagonal

4cs542g-term1-2006

Pivoting

! LU and Modified Cholesky can fail
• Example: if A11=0

! Go back to Gaussian Elimination ideas: reorder
the equations (rows) to get a nonzero entry

! In fact, nearly zero entries still a problem
• Possibly due to cancellation error => few significant

digits
• Dividing through will taint rest of calculation

! Pivoting strategy: reorder to get the biggest entry
on the diagonal
• Partial pivoting: just reorder rows

• Complete pivoting: reorder rows and columns
(expensive)

5cs542g-term1-2006

Pivoting in LU

! Can express it as a factorization:
A=PLU
• P is a permutation matrix: just the identity with

its rows (or columns) permuted

• Store the permutation, not P!

6cs542g-term1-2006

Symmetric Pivoting

! Problem: partial (or complete) pivoting destroys
symmetry

! How can we factor a symmetric indefinite matrix
reliably but twice as fast as unsymmetric
matrices?

! One idea: symmetric pivoting PAPT=LDLT

• Swap the rows the same as the columns

! But let D have 2x2 as well as 1x1 blocks on the
diagonal
• Partial pivoting: Bunch-Kaufman (LAPACK)

• Complete pivoting: Bunch-Parlett (safer)

7cs542g-term1-2006

Reconsidering RBF

! RBF interpolation has advantages:
• Mesh-free

• Optimal in some sense

• Exponential convergence (each point extra
data point improves fit everywhere)

• Defined everywhere

! But some disadvantages:
• It!s a global calculation

(even with compactly supported functions)

• Big dense matrix to form and solve
(though later we!ll revisit that…

8cs542g-term1-2006

Gibbs

! Globally smooth
calculation also
makes for
overshoot/
undershoot
(Gibbs phenomena)
around
discontinuities

! Can!t easily control
effect

9cs542g-term1-2006

Noise

! If data contains noise (errors), RBF strictly
interpolates them

! If the errors aren!t spatially correlated, lots
of discontinuities: RBF interpolant
becomes wiggly

10cs542g-term1-2006

Linear Least Squares

! Idea: instead of interpolating data + noise,
approximate

! Pick our approximation from a space of
functions we expect (e.g. not wiggly --
maybe low degree polynomials) to filter
out the noise

! Standard way of defining it:

f (x) = !i"i (x)
i=1

k

#

! = argmin
!

f j $ f (x j)()
2

j=1

n

#

11cs542g-term1-2006

Rewriting

! Write it in matrix-vector form:

fi ! " j# j (xi)
j=1

k

$
%

&'
(

)*

2

= b ! Ax
2

2

i=1

n

$

b = f1 f2 ! fn()
T

x = "1 ! "k()
T

Aij = #i (x j) (a rectangular n + k matrix)

12cs542g-term1-2006

Normal Equations

! First attempt at finding minimum:
set the gradient equal to zero
(called “the normal equations”)

!

!x
b " Ax

2

2
= 0

!

!x
(b " Ax)

T
(b " Ax)() = 0

!

!x
b
T
b " 2x

T
A
T
b + x

T
A
T
Ax() = 0

"2A
T
b + 2A

T
Ax = 0

A
T
Ax = A

T
b

13cs542g-term1-2006

Good Normal Equations

! ATA is a square k!k matrix
(k probably much smaller than n)

" Symmetric positive (semi-)definite

14cs542g-term1-2006

Bad Normal Equations

! What if k=n?
At least for 2-norm condition number,
k(ATA)=k(A)2

• Accuracy could be a problem…

! In general, can we avoid squaring the
errors?

