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Notes

! Assignment 1 is out (due October 5)

! Matrix storage: usually column-major
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Block Approach to LU

! Rather than get bogged down in details of
GE (hard to see forest for trees)

! Partition the equation A=LU

! Gives natural formulas for algorithms

! Extends to block algorithms
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Cholesky Factorization

! If A is symmetric positive definite, can cut
work in half: A=LLT

• L is lower triangular

! If A is symmetric but indefinite, possibly
still have the Modified Cholesky
factorization: A=LDLT

• L is unit lower triangular

• D is diagonal
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Pivoting

! LU and Modified Cholesky can fail
• Example: if A11=0

! Go back to Gaussian Elimination ideas: reorder
the equations (rows) to get a nonzero entry

! In fact, nearly zero entries still a problem
• Possibly due to cancellation error => few significant

digits
• Dividing through will taint rest of calculation

! Pivoting strategy: reorder to get the biggest entry
on the diagonal
• Partial pivoting: just reorder rows

• Complete pivoting: reorder rows and columns
(expensive)
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Pivoting in LU

! Can express it as a factorization:
A=PLU
• P is a permutation matrix: just the identity with

its rows (or columns) permuted

• Store the permutation, not P!
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Symmetric Pivoting

! Problem: partial (or complete) pivoting destroys
symmetry

! How can we factor a symmetric indefinite matrix
reliably but twice as fast as unsymmetric
matrices?

! One idea: symmetric pivoting    PAPT=LDLT

• Swap the rows the same as the columns

! But let D have 2x2 as well as 1x1 blocks on the
diagonal
• Partial pivoting: Bunch-Kaufman (LAPACK)

• Complete pivoting: Bunch-Parlett (safer)
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Reconsidering RBF

! RBF interpolation has advantages:
• Mesh-free

• Optimal in some sense

• Exponential convergence (each point extra
data point improves fit everywhere)

• Defined everywhere

! But some disadvantages:
• It!s a global calculation

(even with compactly supported functions)

• Big dense matrix to form and solve
(though later we!ll revisit that…
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Gibbs

! Globally smooth
calculation also
makes for
overshoot/
undershoot
(Gibbs phenomena)
around
discontinuities

! Can!t easily control
effect
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Noise

! If data contains noise (errors), RBF strictly
interpolates them

! If the errors aren!t spatially correlated, lots
of discontinuities: RBF interpolant
becomes wiggly
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Linear Least Squares

! Idea: instead of interpolating data + noise,
approximate

! Pick our approximation from a space of
functions we expect (e.g. not wiggly --
maybe low degree polynomials) to filter
out the noise

! Standard way of defining it:

f (x) = !i"i (x)
i=1

k

#

! = argmin
!

f j $ f (x j )( )
2

j=1

n

#
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Rewriting

! Write it in matrix-vector form:

 

fi ! " j# j (xi )
j=1
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= b ! Ax
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i=1
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b = f1 f2 ! fn( )
T

x = "1 ! "k( )
T

Aij = #i (x j )   (a rectangular n + k matrix)
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Normal Equations

! First attempt at finding minimum:
set the gradient equal to zero
(called “the normal equations”)

!

!x
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2
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= 0

!
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Good Normal Equations

! ATA is a square k!k matrix
(k probably much smaller than n)

" Symmetric positive (semi-)definite
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Bad Normal Equations

! What if k=n?
At least for 2-norm condition number,
k(ATA)=k(A)2

• Accuracy could be a problem…

! In general, can we avoid squaring the
errors?


