Notes

 Assignment 1 will be out later today (look on the web)

cs542g-term1-2006

Linear Algebra

- Last class:
 - we reduced the problem of "optimally" interpolating scattered data to solving a system of linear equations
- ◆ This week: start delving into numerical linear algebra
- Often almost all of the computational work in a scientific computing code is linear algebra operations

cs542g-term1-2006

Basic Definitions

- ◆ Matrix/vector notation
- ◆ Dot product, outer product
- ♦ Vector norms
- Matrix norms

cs542g-term1-2006

Accuracy

- How accurate can we expect a floating point matrix-vector multiply to be?
 - Assume result is the exact answer to a perturbed problem
- How accurate are real implementations?

cs542g-term1-2006

BLAS

- Many common matrix/vector operations have been standardized into an API called the BLAS (Basic Linear Algebra Subroutines)
 - Level 1: vector operations copy, scale, dot, add, norms, ...
 - Level 2: matrix-vector operations multiply, triangular solve, ...
 - Level 3: matrix-matrix operations multiply, triangular solve, ...
- ◆ FORTRAN bias, but callable from other langs
- Goals:
 - As fast as possible, but still safe/accurate
- www.netlib.org/blas

cs542g-term1-2006

Speed in BLAS

- In each level: multithreading, prefetching, vectorization, loop unrolling, etc.
- ◆ In level 2, especially in level 3: blocking
 - Operate on sub-blocks of the matrix that fit the memory architecture well
- General goal: if it's easy to phrase an operation in terms of BLAS, get speed+safety for free
 - The higher the level better

cs542g-term1-2006

LAPACK

- ◆ The BLAS only solves triangular systems
 - Forward or backward substitution
- LAPACK is a higher level API for matrix operations:
 - Solving linear systems
 - Solving linear least squares problems
 - Solving eigenvalue problems
- ◆ Built on the BLAS, with blocking in mind to keep high performance
- Biggest advantage: safety
 - · Designed to handle difficult problems gracefully
- www.netlib.org/lapack

cs542g-term1-2006

Specializations

- When solving a linear system, first question to ask: what sort of system?
- ◆ Many properties to consider:
 - Single precision or double?
 - · Real or complex?
 - Invertible or (nearly) singular?
 - Symmetric/Hermitian?
 - Definite or Indefinite?
 - Dense or sparse or specially structured?
 - Multiple right-hand sides?
- ◆ LAPACK/BLAS take advantage of many of these (sparse matrices the big exception...)

cs542g-term1-2006

Accuracy

- Before jumping into algorithms, how accurate can we hope to be in solving a linear system?
- ◆ Key idea: backward error analysis
- Assume calculated answer is the exact solution of a perturbed problem.

cs542g-term1-2006

cs542g-term1-2006

Condition Number

- Sometimes we can estimate the condition number of a matrix a priori
- Special case: for a symmetric matrix, 2-norm condition number is ratio of extreme eigenvalues
- ◆ LAPACK also provides cheap estimates
 - Try to construct a vector llxll that comes close to maximizing IIA-1xll

cs542g-term1-2006

Gaussian Flimination

- Let's start with the simplest unspecialized algorithm: Gaussian Elimination
- Assume the matrix is invertible, but otherwise nothing special known about it
- GE simply is row-reduction to upper triangular form, followed by backwards substitution
 - Permuting rows if we run into a zero

LU Factorization

- Each step of row reduction is multiplication by an elementary matrix
- ◆ Gathering these together, we find GE is essentially a matrix factorization:

A=LU

where

L is lower triangular (and unit diagonal), U is upper triangular

◆ Solving Ax=b by GE is then

Ly=b Ux=y

Block Approach to LU

- ◆ Rather than get bogged down in details of GE (hard to see forest for trees)
- ◆ Partition the equation A=LU
- ◆ Gives natural formulas for algorithms
- ◆ Extends to block algorithms

cs542g-term1-2006

13