Notes

- Email list
- Even if you're just auditing!

Other Standard Approach

- Find where line intersects plane of triangle
- Check if it's on the segment
- Find if that point is inside the triangle
- Use barycentric coordinates
- Slightly slower, but worse: less robust
- round-off error in intermediate result: the intersection point
- What happens for a triangle mesh?
- Note the predicate approach, even with floatingpoint, can handle meshes well
- Consistent evaluation of predicates for neighbouring triangles
cs533d-term1-2005

Testing Against Meshes

- Can check every triangle if only a few, but too slow usually
- Use an acceleration structure:
- Spatial decomposition:
background grid, hash grid, octree, kd-tree, BSP-tree, ...
- Bounding volume hierarchy: axis-aligned boxes, spheres, oriented boxes,

Moving Triangles

- Collision detection: find a time at which particle lies inside triangle
- Need a model for what triangle looks like at intermediate times
- Simplest: vertices move with constant velocity, triangle always just connects them up
- Solve for intermediate time when four points are coplanar (determinant is zero)
- Gives a cubic equation to solve
- Then check barycentric coordinates at that time
- See e.g. X. Provot, "Collision and self-collision handling in cloth model dedicated to design garment", Graphics Interface'97

For Later...

- We now can do all the basic particle vs. object tests for repulsions and collisions
- Once we get into simulating solid objects, we'll need to do object vs. object instead of just particle vs. object
- Core ideas remain the same

Elastic objects

- Simplest model: masses and springs
- Split up object into regions
- Integrate density in each region to get mass (if things are uniform enough, perhaps equal mass)
- Connect up neighbouring regions with springs
- Careful: need chordal graph
- Now it's just a particle system
- When you move a node, neighbours pulled along with it, etc.

Masses and springs

- But: how strong should the springs be? Is this good in general?
- [anisotropic examples]
- General rule: we don't want to see the mesh in the output
- Avoid "grid artifacts"
- We of course will have numerical error, but let's avoid obvious patterns in the error

Figuring out spring constants

- So net force on i is

$$
\begin{aligned}
F_{i} & =k_{i+1 / 2} \frac{x_{i+1}-x_{i}-L_{i+1 / 2}}{L_{i+1 / 2}}-k_{i-1 / 2} \frac{x_{i}-x_{i-1}-L_{i-1 / 2}}{L_{i-1 / 2}} \\
& =k_{i+1 / 2}\left(\frac{x_{i+1}-x_{i}}{p_{i+1}-p_{i}}-1\right)-k_{i-1 / 2}\left(\frac{x_{i}-x_{i-1}}{p_{i}-p_{i-1}}-1\right)
\end{aligned}
$$

- We want mesh-independent response (roughly), e.g. for static equilibrium
- Rod stretched the same everywhere: $\mathrm{x}_{\mathrm{i}}=\alpha \mathrm{p}_{\mathrm{i}}$
- Then net force on each node should be zero (add in constraint force at ends...)

1D masses and springs

- Look at a homogeneous elastic rod, length 1, linear density ρ
- Parameterize by $\mathrm{p}(\mathrm{x}(\mathrm{p})=\mathrm{p}$ in rest state)
- Split up into intervals/springs
- $0=p_{0}<p_{1}<\ldots<p_{n}=1$
- Mass $m_{i}=\rho\left(p_{i+1}-p_{i-1}\right) / 2 \quad$ (+ special cases for ends)
- Spring $i+1 / 2$ has rest length $L_{i+1 / 2}=p_{i+1}-p_{i}$
and force $f_{i+1 / 2}=k_{i+1 / 2} \frac{x_{i+1}-x_{i}-L_{i+1 / 2}}{L_{i+1 / 2}}$

Young's modulus

- So each spring should have the same k
- Note we divided by the rest length
- Some people don't, so they have to make their constant scale with rest length
- The constant k is a material property (doesn't depend on our discretization) called the Young's modulus
- Often written as E
- The one-dimensional Young's modulus is simply force per percentage deformation

The continuum limit

- Imagine $\Delta \mathrm{p}$ (or $\Delta \mathrm{x}$) going to zero
- Eventually can represent any kind of deformation
- [note force and mass go to zero too]

$$
\ddot{x}(p)=\frac{1}{\rho} \frac{\partial}{\partial p}\left(E(p)\left(\frac{\partial}{\partial a} x(p)-1\right)\right)
$$

- If density and Young's modulus constant,

$$
\frac{\partial^{2} x}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} x}{\partial p^{2}}
$$

Sound waves

- Try solution $\mathrm{x}(\mathrm{p}, \mathrm{t})=\mathrm{x}_{0}(\mathrm{p}-\mathrm{ct})$
- And $x(p, t)=x_{0}(p+c t)$
- So speed of "sound" in rod is $\sqrt{\frac{E}{\rho}}$
- Courant-Friedrichs-Levy (CFL) condition:
- Numerical methods only will work if information transmitted numerically at least as fast as in reality (here: the speed of sound)
- Usually the same as stability limit for good explicit methods [what are the eigenvalues here]
- Implicit methods transmit information infinitely fast

Why?

- Are sound waves important?
- Visually? Usually not
- However, since speed of sound is a material property, it can help us get to higher dimensions
- Speed of sound in terms of one spring is
- So in higher dimensions $\frac{c}{}=\sqrt{\frac{k L}{u s t}}$ pick k so that c is constant
- m is mass around spring [triangles, tets]
- Optional reading: van Gelder

