Notes

- ◆ Email list
 - Even if you're just auditing!

cs533d-term1-2005

Other Standard Approach

- ◆ Find where line intersects plane of triangle
- ◆ Check if it's on the segment
- ◆ Find if that point is inside the triangle
 - Use barycentric coordinates
- Slightly slower, but worse: less robust
 - round-off error in intermediate result: the intersection point
 - What happens for a triangle mesh?
- ◆ Note the predicate approach, even with floatingpoint, can handle meshes well
 - Consistent evaluation of predicates for neighbouring triangles

cs533d-term1-2005

Distance to Triangle

- If surface is open, define interference in terms of distance to mesh
- ◆ Typical approach: find closest point on triangle, then distance to that point
 - Direction to closest point also parallel to natural normal
- First step: barycentric coordinates
 - Normalized signed volume determinants equivalent to solving least squares problem of closest point in plane
- ◆ If coordinates all in [0,1] we're done
- Otherwise negative coords identify possible closest edges
- ◆ Find closest points on edges

Testing Against Meshes

- Can check every triangle if only a few, but too slow usually
- ◆ Use an acceleration structure:
 - Spatial decomposition: background grid, hash grid, octree, kd-tree, BSP-tree, ...
 - Bounding volume hierarchy: axis-aligned boxes, spheres, oriented boxes,

cs533d-term1-2005

Moving Triangles

- ◆ Collision detection: find a time at which particle lies inside triangle
- Need a model for what triangle looks like at intermediate times
 - Simplest: vertices move with constant velocity, triangle always just connects them up
- ◆ Solve for intermediate time when four points are coplanar (determinant is zero)
 - Gives a cubic equation to solve
- ◆ Then check barycentric coordinates at that time
 - See e.g. X. Provot, "Collision and self-collision handling in cloth model dedicated to design garment", Graphics Interface'97

cs533d-term1-2005

For Later...

- We now can do all the basic particle vs. object tests for repulsions and collisions
- ◆ Once we get into simulating solid objects, we'll need to do object vs. object instead of just particle vs. object
- Core ideas remain the same

cs533d-term1-2005

Elasticity

Elastic objects

- ◆ Simplest model: masses and springs
- ◆ Split up object into regions
- Integrate density in each region to get mass (if things are uniform enough, perhaps equal mass)
- ◆ Connect up neighbouring regions with springs
 - Careful: need chordal graph
- ◆ Now it's just a particle system
 - When you move a node, neighbours pulled along with it, etc.

cs533d-term1-2005

Masses and springs

- ◆ But: how strong should the springs be? Is this good in general?
 - [anisotropic examples]
- General rule: we don't want to see the mesh in the output
 - Avoid "grid artifacts"
 - We of course will have numerical error, but let's avoid obvious patterns in the error

cs533d-term1-2005

1D masses and springs

- Look at a homogeneous elastic rod, length 1, linear density ρ
- \bullet Parameterize by p (x(p)=p in rest state)
- ◆ Split up into intervals/springs
 - $0 = p_0 < p_1 < ... < p_n = 1$
 - Mass $m_i = \rho(p_{i+1} p_{i-1})/2$ (+ special cases for ends)
 - Spring i+1/2 has rest length $L_{i+\frac{1}{2}} = p_{i+1} p_i$

and force
$$f_{i+\frac{1}{2}} = k_{i+\frac{1}{2}} \frac{x_{i+1} - x_i - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}}$$

cs533d-term1-2005

Figuring out spring constants

◆ So net force on i is

$$F_{i} = k_{i+\frac{1}{2}} \frac{x_{i+1} - x_{i} - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}} - k_{i-\frac{1}{2}} \frac{x_{i} - x_{i-1} - L_{i-\frac{1}{2}}}{L_{i-\frac{1}{2}}}$$

$$= k_{i+\frac{1}{2}} \left(\frac{x_{i+1} - x_{i}}{p_{i+1} - p_{i}} - 1 \right) - k_{i-\frac{1}{2}} \left(\frac{x_{i} - x_{i-1}}{p_{i} - p_{i-1}} - 1 \right)$$

- We want mesh-independent response (roughly), e.g. for static equilibrium
 - Rod stretched the same everywhere: $x_i = \alpha p_i$
 - Then net force on each node should be zero (add in constraint force at ends...)

Young's modulus

- ◆ So each spring should have the same k
 - Note we divided by the rest length
 - Some people don't, so they have to make their constant scale with rest length
- The constant k is a material property (doesn't depend on our discretization) called the Young's modulus
 - Often written as E
- ◆ The one-dimensional Young's modulus is simply force per percentage deformation

cs533d-term1-2005

The continuum limit

- Imagine Δp (or Δx) going to zero
 - Eventually can represent any kind of deformation
 - [note force and mass go to zero too]

$$\ddot{x}(p) = \frac{1}{\rho} \frac{\partial}{\partial p} \left(E(p) \left(\frac{\partial}{\partial a} x(p) - 1 \right) \right)$$

• If density and Young's modulus constant,

$$\frac{\partial^2 x}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 x}{\partial p^2}$$

cs533d-term1-2005

Why?

- Are sound waves important?
 - · Visually? Usually not
- However, since speed of sound is a material property, it can help us get to higher dimensions
- Speed of sound in terms of one spring is

- So in higher dimensions, $\sqrt{\frac{kL}{u_R}}$ pick k so that c is constant
 - m is mass around spring [triangles, tets]
 - · Optional reading: van Gelder

Sound waves

- ♦ Try solution $x(p,t)=x_0(p-ct)$
- And $x(p,t)=x_0(p+ct)$
- So speed of "sound" in rod is $\sqrt{\frac{E}{c}}$
- ◆ Courant-Friedrichs-Levy (CFL) condition:
 - Numerical methods only will work if information transmitted numerically at least as fast as in reality (here: the speed of sound)
 - Usually the same as stability limit for good explicit methods [what are the eigenvalues here]
 - Implicit methods transmit information infinitely fast