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Notes

! For using Pixie (the renderer) make sure
you type “use pixie” first

! Assignment 1 questions?
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Time scales

! [work out]
! For position dependence, characteristic time

interval is

! For velocity dependence, characteristic time
interval is

! Note: matches symplectic Euler stability limits
• If you care about resolving these time scales, there!s

not much point in going to implicit methods
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Mixed Implicit/Explicit

! For some problems, that square root can
mean velocity limit much stricter

! Or, we know we want to properly resolve
the position-based oscillations, but don!t
care about exact damping rate

! Go explicit on position, implicit on velocity
• Often, a(x,v) is linear in v, though nonlinear in

x; this way we avoid Newton iteration
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Newmark Methods

! A general class of methods

! Includes Trapezoidal Rule for example
(!=1/4, "=1/2)

# The other major member of the family is Central
Differencing (!=0, "=1/2)
• This is mixed Implicit/Explicit
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Central Differencing

! Rewrite it with intermediate velocity:

! Looks like a hybrid of:
• Midpoint (for position), and

• Trapezoidal Rule (for velocity - split into
Forward and Backward Euler half steps)
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Central: Performance

! Constant acceleration: great
• 2nd order accurate

! Position dependence: good
• Conditionally stable, no damping

! Velocity dependence: good
• Stable, but only conditionally monotone

! Can we change the Trapezoidal Rule to
Backward Euler and get unconditional
monotonicity?
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Staggered Implicit/Explicit

! Like the staggered Symplectic Euler, but use
B.E. in velocity instead of F.E.:

! Constant acceleration: great

! Position dependence: good (conditionally stable,
no damping)

! Velocity dependence: great (unconditionally
monotone)

� 

v
n+ 1

2
= v

n! 12
+ 1

2
(t
n+1 ! tn!1)a xn,vn+ 1

2
( )

x
n+1 = x

n
+ "tv

n+ 1
2

8cs533d-term1-2005

Summary (2nd order)

! Depends a lot on the problem
• What!s important: gravity, position, velocity?

! Explicit methods from last class are probably bad

! Symplectic Euler is a great fully explicit method
(particularly with staggering)
• Switch to implicit velocity step for more stability, if damping time

step limit is the bottleneck

! Implicit Compromise method
• Fully stable, nice behaviour
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Example Motions
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Simple Velocity Fields

! Can superimpose (add) to get more
complexity

! Constants: v(x)=constant

! Expansion/contraction: v(x)=k(x-x0)
• Maybe make k a function of distance |x-x0|

! Rotation:
• Maybe scale by a function of distance |x-x0| or

magnitude
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Noise

! Common way to perturb fields that are too
perfect and clean

! Noise (in graphics) =
a smooth, non-periodic field with clear length-
scale

! Read Perlin, “Improving Noise”, SIGGRAPH!02
• Hash grid points into an array of random slopes that

define a cubic Hermite spline

! Can also use a Fourier construction
• Band limited signal

• Better, more control, but (possibly much) more
expensive

• FFT - check out www.fftw.org for one good
implementation 12cs533d-term1-2005

Example Forces

! Gravity: Fgravity=mg  (a=g)

! If you want to do orbits

! Note x0 could be a fixed point (e.g. the Sun) or
another particle
• But make sure to add the opposite and equal force to

the other particle if so!
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Drag Forces

! Air drag: Fdrag=-Dv
• If there!s a wind blowing with velocity vw then

Fdrag=-D(v-vw)

! D should be a function of the cross-section
exposed to wind
• Think paper, leaves, different sized objects,

…

! Depends in a difficult way on shape too
• Hack away!
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Spring Forces

! Springs: Fspring=-K(x-x0)
• x0 is the attachment point of the spring

• Could be a fixed point in the scene

• …or somewhere on a character!s body

• …or the mouse cursor

• …or another particle (but please add equal
and oppposite force!)
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Nonzero Rest Length Spring

! Need to measure the “strain”:
the fraction the spring has stretched from
its rest length L

� 

Fspring = !K
x ! x

0

L
!1

" 

# 
$ 

% 

& 
' 
x ! x

0

x ! x
0

16cs533d-term1-2005

Spring Damping

! Simple damping: Fdamp=-D(v-v0)
• But this damps rotation too!

! Better spring damping:
              Fdamp=-D(v-v0)•u/L u
• Here u is (x-x0)/|x-x0|, the spring direction

! [work out 1d case]

! Critical damping: fastest damping possible
• For individual springs, gives a good typical

damping force you can multiply by a factor
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Collision and Contact
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Collision and Contact

! We can integrate particles forward in time, have
some ideas for velocity or force fields

! But what do we do when a particle hits an
object?

! No simple answer, depends on problem as
always

! General breakdown:
• Interference vs. collision detection

• What sort of collision response: (in)elastic, friction

• Robustness: do we allow particles to actually be
inside an object?
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! Interference (=penetration)
• Simply detect if particle has ended up inside object,

push it out if so

• Works fine if                          [w=object width]
• Otherwise could miss interaction, or push dramatically

the wrong way

• The ground, thick objects and slow particles

! Collision
• Check if particle trajectory intersects object

• Can be more complicated, especially if object is
moving too…

! For now, let!s stick with the ground (y=0)
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Repulsion Forces

! Simplest idea (conceptually)
• Add a force repelling particles from objects when they

get close (or when they penetrate)

• Then just integrate: business as usual
• Related to penalty method:

instead of directly enforcing constraint (particles stay
outside of objects), add forces to encourage
constraint

! For the ground:
• Frepulsion=-Ky when y<0             [think about gravity!]

• …or -K(y-y0)-Dv when y<y0    [still not robust]
• …or K(1/y-1/y0)-Dv when y<y0
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Repulsion forces

! Difficult to tune:
• Too large extent: visible artifact

• Too small extent: particles jump straight through, not
robust (or time step restriction)

• Too strong: stiff time step restriction, or have to go
with implicit method - but Newton will not converge if
we guess past a singular repulsion force

• Too weak: won!t stop particles

! Rule-of-thumb: don!t use them unless they really
are part of physics
• Magnetic field, aerodynamic effects, …
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Collision and Contact

! Collision is when a particle hits an object
• Instantaneous change of velocity

(discontinuous)

! Contact is when particle stays on object
surface for positive time
• Velocity is continuous

• Force is only discontinuous at start
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! At point of contact, find normal n
• For ground, n=(0,1,0)

! Decompose velocity into
• normal component vN=(v•n)n and

• tangential component vT=v-vN

! Normal response:
• $=0 is fully inelastic

• $=1 is elastic

# Tangential response
• Frictionless:

# Then reassemble velocity v=vN+vT
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