Notes

- Most of assignment 1 hasn't been covered in class yet, but after today you should be able to do a lot of it
- Forgot to include instructions about view_obj:
- To navigate, hold down shift and click/drag with left, right, or middle mouse buttons (same navigation model as Maya)
- The method:

$$
x_{n+1}=x_{n}+\Delta t\left(\frac{1}{2} v\left(x_{n}, t_{n}\right)+\frac{1}{2} v\left(x_{n+1}, t_{n+1}\right)\right)
$$

- Let's work out stability:

$$
\begin{aligned}
x_{n+1} & =x_{n}+\Delta t\left(\frac{1}{2} \lambda x_{n}+\frac{1}{2} \lambda x_{n+1}\right) \\
\left(1-\frac{1}{2} \lambda \Delta t\right) x_{n+1} & =\left(1+\frac{1}{2} \lambda \Delta t\right) x_{n} \\
x_{n+1} & =\frac{1+\frac{1}{2} \lambda \Delta}{1-\frac{1}{2} \lambda \Delta t} x_{n}
\end{aligned}
$$

Monotonicity and Implicit Methods

- Backward Euler is unconditionally monotone
- No problems with oscillation, just too much damping
- Trapezoidal Rule suffers though, because of that half-step of F.E.
- Beware: could get ugly oscillation instead of smooth damping

Summary 1

- Particle Systems: useful for lots of stuff
- Need to move particles in velocity field
- Forward Euler
- Simple, first choice unless problem has oscillation/rotation
- Runge-Kutta if happy to obey stability limit
- Modified Euler may be cheapest method
- RK4 general purpose workhorse
- TVD-RK3 for more robustness with nonlinearity (more on this later in the course!)
- If stability limit is a problem, look at implicit methods
- e.g. need to guarantee a frame-rate, or
e.g. need to guarantee a frame-rate, or
explicit time steps are way too small
- Trapezoidal Rule
- If monotonicity isn't a problem
- Backward Euler
- Almost always works, but may over-damp!

Summary 2

Second Order Motion

Second Order Motion

- If particle state is just position (and colour, size, ...) then 1st order motion
- No inertia
- Good for very light particles that stay suspended: smoke, dust...
- Good for some special cases (hacks)
- But most often, want inertia
- State includes velocity, specify acceleration
- Can then do parabolic arcs due to gravity, etc.
- This puts us in the realm of standard Newtonian physics
- $\mathrm{F}=\mathrm{ma}$
- Alternatively put:
- $d x / d t=v$
- $d v / d t=F(x, v, t) / m \quad$ (i.e. $a(x, v, t))$
- For systems (with many masses) say $d v / d t=M^{-1} F(x, v, t)$ where M is the "mass matrix" - masses on the diagonal

What's New?

- If $\mathbf{x}=(\mathrm{x}, \mathrm{v})$ this is just a special form of 1 st order: $\mathrm{d} \mathbf{x} / \mathrm{dt}=\mathbf{v}(\mathrm{x}, \mathrm{t})$
- But since we know the special structure, can we take advantage of it?
(i.e. better time integration algorithms)
- More stability for less cost?
- Handle position and velocity differently to better control error?

Constant Acceleration

- Solution is

$$
\begin{aligned}
& v(t)=v_{0}+a_{0} t \\
& x(t)=x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2}
\end{aligned}
$$

- No problem to get $\mathrm{v}(\mathrm{t})$ right:
just need 1st order accuracy
- But $x(t)$ demands 2nd order accuracy
- So we can look at mixed methods:
- 1st order in v
- 2nd order in x
- Approximate acceleration:

$$
a(x, v) \approx a_{0}+\frac{\partial a}{\partial x} x+\frac{\partial a}{\partial v} v
$$

- Split up analysis into different cases
- Begin with first term dominating: constant acceleration
- e.g. gravity is most important

Linear Analysis

Linear Acceleration

- Dependence on x and v dominates:

$$
a(x, v)=-K x-D v
$$

- Do the analysis as before:

$$
\frac{d}{d t}\binom{x}{v}=\left(\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right)\binom{x}{v}
$$

- Eigenvalues of this matrix?

More Approximations.

- Typically K and D are symmetric semi-definite (there are good reasons)
- What does this mean about their eigenvalues?
- Often, D is a linear combination of K and I
("Rayleigh damping"), or at least close to it
- Then K and D have the same eigenvectors (but different eigenvalues)
- Then the eigenvectors of the Jacobian are of the form $(u, \alpha u)^{\top}$
- [work out what α is in terms of λ_{K} and λ_{D}]

Split Into More Cases

- Still messy! Simplify further
- If D dominates (e.g. air drag, damping)

$$
\alpha \approx\left\{-\lambda_{D}, 0\right\}
$$

- Exponential decay and constant
\bullet If K dominates (e.g. spring force)

$$
\alpha \approx \pm \sqrt{-1} \sqrt{\lambda_{K}}
$$

Simplification

$v \alpha$ is the eigenvalue of the Jacobian, and

$$
\alpha=-\frac{1}{2} \lambda_{D} \pm \sqrt{\left(\frac{1}{2} \lambda_{D}\right)^{2}-\lambda_{K}}
$$

- Same as eigenvalues of

$$
\left(\begin{array}{cc}
0 & 1 \\
-\lambda_{K} & -\lambda_{D}
\end{array}\right)
$$

- Can replace K and D (matrices) with corresponding eigenvalues (scalars)
- Just have to analyze $2 x 2$ system

Three Test Equations

- Constant acceleration (e.g. gravity)
- $a(x, v, t)=g$
- Want exact (2nd order accurate) position
- Position dependence (e.g. spring force)
- $a(x, v, t)=-K x$
- Want stability but low or zero damping
- Look at imaginary axis
- Velocity dependence (e.g. damping)
- $a(x, v, t)=-D v$
- Want stability, monotone decay
- Look at negative real axis

Explicit methods from before

- Forward Euler
- Constant acceleration: bad (1st order)
- Position dependence: very bad (unstable)
- Velocity dependence: ok (conditionally monotone/stable)
- RK3 and RK4
- Constant acceleration: great (high order)
- Position dependence: ok (conditionally stable, but damps out oscillation)
- Velocity dependence: ok (conditionally monotone/stable)

Implicit methods from before

- Backward Euler

- Constant acceleration: bad (1st order)
- Position dependence: ok (stable, but damps)
- Velocity dependence: great (monotone)
- Trapezoidal Rule
- Constant acceleration: great (2nd order)
- Position dependence: great (stable, no damping)
- Velocity dependence: good (stable but only conditionally monotone)

Setting Up Implicit Solves

- Let's take a look at actually using Backwards

Euler, for example

$$
\begin{aligned}
& x_{n+1}=x_{n}+\Delta t v_{n+1} \\
& v_{n+1}=v_{n}+\Delta t M^{-1} F\left(x_{n+1}, v_{n+1}\right)
\end{aligned}
$$

- Eliminate position, solve for velocity:

$$
v_{n+1}=v_{n}+\Delta t M^{-1} F\left(x_{n}+\Delta t v_{n+1}, v_{n+1}\right)
$$

- Linearize at guess v^{k}, solving for $\mathrm{v}_{\mathrm{n}+1} \approx \mathrm{v}^{\mathrm{k}}+\Delta \mathrm{v}$

$$
v^{k}+\Delta v=v_{n}+\Delta t M^{-1}\left(F\left(x_{n}+\Delta t v^{k}, v^{k}\right)+\Delta t \frac{\partial F}{\partial x} \Delta v+\frac{\partial F}{\partial v} \Delta v\right)
$$

- Collect terms, multiply by M

$$
\left(M-\Delta t \frac{\partial F}{\partial v}-\Delta t^{2} \frac{\partial F}{\partial x}\right) \Delta v=M\left(v_{n}-v^{k}\right)+\Delta t F\left(x_{n}+\Delta t v^{k}, v^{k}\right)
$$

Symmetry

-Why multiply by M?

- $\begin{aligned} & \text { Physics often demands that } \frac{\partial F_{\text {postion }}}{\partial x} \text { and } \frac{\partial F_{\text {velocity }}}{\partial v} \\ & \text { are symmetric }\end{aligned}$
- And M is symmetric, so this means matrix is symmetric, hence easier to solve
- (physics generally says matrix is SPD - even better)
- If the masses are not equal, the acceleration form of the equations results in an unsymmetric matrix- bad.
- Unfortunately the matrix $\frac{\partial F_{\text {vecoity }}}{\partial{ }^{\text {in }}}$ is usually unsymmetric ∂x
- Makes solving with it considerably less efficient
- See Baraff \& Witkin, "Large steps in cloth simulation", SIGGRAPH ' 98 for one solution: throw out bad part

Specialized 2nd Order Methods

- This is again a big subject
- Again look at explicit methods, implicit methods
- Also can treat position and velocity dependence differently: mixed implicit-explicit methods

Symplectic Euler

- Like Forward Euler, but updated velocity used for position

$$
\begin{aligned}
& v_{n+1}=v_{n}+\Delta t a\left(x_{n}, v_{n}\right) \\
& x_{n+1}=x_{n}+\Delta t v_{n+1}
\end{aligned}
$$

- Some people flip the steps (= relabel v_{n})
- Symplectic means certain qualities of the underlying physics are preserved in discretization - quite desirable visually!
- [work out test cases]

Tweaking Symplectic Euler

- [sketch algorithms]
- Stagger the velocity to improve x
- Start off with

$$
v_{1 / 2}=v_{0}+\frac{1}{2} \Delta t a\left(x_{0}, v_{0}\right)
$$

- Then proceed with

$$
\begin{aligned}
v_{n+1 / 2} & =v_{n-1 / 2}+\frac{1}{2}\left(t_{n+1}-t_{n-1}\right) a\left(x_{n}, v_{n-1 / 2}\right) \\
x_{n+1} & =x_{n}+\Delta t v_{n+1 / 2}
\end{aligned}
$$

- Finish off with

$$
v_{N}=v_{N-1 / 2}+\frac{1}{2} \Delta t a\left(x_{N}, v_{N-1 / 2}\right)
$$

Staggered Symplectic Euler

- Constant acceleration: great!
- Position is exact now
- Other cases not effected
- Was that magic? Main part of algorithm unchanged (apart from relabeling) yet now it's more accurate!
- Only downside to staggering
- At intermediate times, position and velocity not known together
- May need to think a bit more about collisions and other interactions with outside algorithms...

An Implicit Compromise

- Backward Euler is nice due to unconditional monotonicity
- Although only 1 st order accurate, it has the right characteristics for damping
- Trapezoidal Rule is great for everything except damping with large time steps
- 2nd order accurate, doesn't damp pure oscillation/rotation
- How can we combine the two?

A common explicit method

- May see this one pop up:
$v_{n+1}=v_{n}+\Delta t a\left(x_{n}, v_{n}\right)$
$x_{n+1}=x_{n}+\Delta t\left(\frac{1}{2} v_{n}+\frac{1}{2} v_{n+1}\right)=x_{n}+\Delta t v_{n}+\frac{1}{2} \Delta t^{2} a_{n}$
- Constant acceleration: great
- Velocity dependence: ok
- Conditionally stable/monotone
- Position dependence: BAD
- Unconditionally unstable!

Implicit Compromise

- Use Backward Euler for velocity dependence, Trapezoidal Rule for the rest:

$$
\begin{aligned}
& x_{n+1}=x_{n}+\Delta t\left(\frac{1}{2} v_{n}+\frac{1}{2} v_{n+1}\right) \\
& v_{n+1}=v_{n}+\Delta t a\left(\frac{1}{2} x_{n}+\frac{1}{2} x_{n+1}, v_{n+1}, t_{n+1 / 2}\right)
\end{aligned}
$$

- Constant acceleration: great (2nd order)
- Position dependence: great (2nd order, no damping)
- Velocity dependence: great (unconditionally monotone)

