CS533D - Animation Physics

533D Animation Physics: Why?

- Natural phenomena: passive motion
- Film/TV: difficult with traditional techniques
- When you control every detail of the motion, it's hard to make it look like it's not being controlled!
- Games: difficult to handle everything convincingly with prescripted motion
- Computer power is increasing, audience expectations are increasing, artist power isn't: need more automatic methods
- Directly simulate the underlying physics to get realistic motion

Contacting Me

- Robert Bridson
- X663 (new wing of CS building)
- Drop by, or make an appointment (safer)
- 604-822-1993 (or just 21993)
- email rbridson@cs.ubc.ca
- I always like feedback!
- Ask questions if I go too fast...

Evaluation

- 4 assignments (60\%)
- See the web for details + when they are due
- Mostly programming, with a little analysis (writing)
- Also a final project (40\%)
- Details will come later, but basically you need to either significantly extend an assignment or animate something else - talk to me about topics
- Present in final class - informal talk, show movies
- Late: without a good reason, 20\% off per day
- For final project starts after final class
- For assignments starts morning after due
- the basics - time integration, forces, collisions
- Particle Systems
- Deformable Bodies
- e.g. cloth and flesh
- Constrained Dynamics
- e.g. rigid bodies
- Fluids
- e.g. water

Topics

Particle Systems

Particle Systems

- Read:

Reeves, "Particle systems...", SIGGRAPH'83 Sims, "Particle animation and rendering using data parallel computation", SIGGRAPH '90 Miller \& Pearce, "Globular dynamics...", SIGGRAPH ‘89

- Some phenomena is most naturally described as many small particles
- Rain, snow, dust, sparks, gravel, ...
- Others are difficult to get a handle on
- Fire, water, grass, ...

Particle Basics

- Each particle has a position
- Maybe orientation, age, colour, velocity, temperature, radius, ...
- Call the state x
- Seeded randomly somewhere at start
- Maybe some created each frame
- Move (evolve state x) each frame according to some formula
- Eventually die when some condition met
- Sparks from a campfire
- Every frame (1/24 s) add 2-3 particles
- Position randomly in fire
- Initialize temperature randomly
- Move in specified turbulent smoke flow
- Also decrease temperature
- Render as a glowing dot (blackbody radiation from temperature)
- Kill when too cold to glow visibly

First Order Motion

- We won't talk much about rendering in this course, but most important for particles
- The real strength of the idea of particle systems: how to render
- Could just be coloured dots
- Or could be shards of glass, or animated sprites (e.g. fire), or deforming blobs of water, or blades of grass, or birds in flight, or ...

Rendering

First Order Motion

- For each particle, have a simple $1^{\text {st }}$ order differential equation:

$$
\frac{d x}{d t}=v(x, t)
$$

- Analytic solutions hopeless
- Need to solve this numerically forward in time from $x(t=0)$ to x(frame1), x(frame2), x(frame3), ...
- May be convenient to solve at some intermediate times between frames too

Forward Euler

- Simplest method:

$$
\frac{x_{n+1}-x_{n}}{\Delta t}=v\left(x_{n}, t_{n}\right)
$$

Or:

$$
x_{n+1}=x_{n}+\Delta t v\left(x_{n}, t_{n}\right)
$$

- Can show it's first order accurate:
- Error accumulated by a fixed time is $\mathrm{O}(\Delta \mathrm{t})$
- Thus it converges to the right answer
- Do we care?

Forward Euler Stability

- Big problem with Forward Euler:
it's not very stable
- Example: $d x / d t=-x, \quad x(0)=1$
- Real solution e^{-t} smoothly decays to zero, always positive
- Run Forward Euler with $\Delta t=11$
- $\mathrm{x}=1,-10,100,-1000,10000, \ldots$
- Instead of 1, $1.7^{*} 10^{-5}, 2.8^{*} 10^{-10}, \ldots$

Linear Analysis

- Approximate

$$
v(x, t) \approx v\left(x^{*}, t^{*}\right)+\frac{\partial v}{\partial x} \cdot\left(x-x^{*}\right)+\frac{\partial v}{\partial t} \cdot\left(t-t^{*}\right)
$$

- Ignore all but the middle term (the one that could cause blow-up)

$$
d x / d t=A x
$$

- Look at x parallel to eigenvector of A :
the "test equation" $d x / d t=\lambda x$

The Test Equation

- Get a rough, hazy, heuristic picture of the stability of a method
- Note that eigenvalue λ can be complex
- But, assume that for real physics
- Things don't blow up without bound
- Thus real part of eigenvalue λ is ≤ 0
- Beware!
- Nonlinear effects can cause instability
- Even with linear problems, what follows assumes constant time steps - varying (but supposedly stable) steps can induce instability
- see J. P. Wright, "Numerical instability due to varying time steps...", JCP 1998

Stability Region

- Can plot all the values of $\lambda \Delta t$ on the complex plane where F.E. is stable:

Real Eigenvalue

- Say eigenvalue is real (and negative)
- Corresponds to a damping motion, smoothly coming to a halt
- Then need:

$$
\Delta t<\frac{2}{|\lambda|}
$$

- Is this bad?
- If eigenvalue is big, could mean small time steps
- But, maybe we really need to capture that time scale anyways, so no big deal

Runge-Kutta Methods

- Also "explicit"
- next x is an explicit function of previous
- But evaluate v at a few locations to get a better estimate of next x
- E.g. midpoint method (one of RK2)

$$
\begin{gathered}
x_{n+1 / 2}=x_{n}+\frac{1}{2} \Delta t v\left(x_{n}, t_{n}\right) \\
x_{n+1}=x_{n}+\Delta t v\left(x_{n+1 / 2}, t_{n+1 / 2}\right)
\end{gathered}
$$

Imaginary Eigenvalue

- If eigenvalue is pure imaginary...
- Oscillatory or rotational motion
- Cannot make Δt small enough
- Forward Euler unconditionally unstable for these kinds of problems!
- Need to look at other methods

Midpoint RK2

- Second order: error is $\mathrm{O}\left(\Delta t^{2}\right)$ when smooth
- Larger stability region:

- But still not stable on imaginary axis: no point

Modified Euler

- (Not an official name)
- Lose second-order accuracy, get stability on imaginary axis:

$$
\begin{gathered}
x_{n+\alpha}=x_{n}+\alpha \Delta t v\left(x_{n}, t_{n}\right) \\
x_{n+1}=x_{n}+\Delta t v\left(x_{n+\alpha}, t_{n+\alpha}\right)
\end{gathered}
$$

- Parameter α between 0.5 and 1 gives trade-off between imaginary axis and real axis
- Stability region for $\alpha=2 / 3$

v Great! But twice the cost of Forward Euler
- Can you get more stability per vevaluation?

TVD-RK3

- RK3 useful because it can be written as a combination of Forward Euler steps and averaging: can guarantee some properties even for nonlinear problems!

$$
\begin{aligned}
\tilde{x}_{n+1} & =x_{n}+\Delta t v\left(x_{n}, t_{n}\right) \\
\tilde{x}_{n+2} & =\tilde{x}_{n+1}+\Delta t v\left(\tilde{x}_{n+1}, t_{n+1}\right) \\
\tilde{x}_{n+1 / 2} & =\frac{3}{4} x_{n}+\frac{1}{4} \tilde{x}_{n+2} \\
\tilde{x}_{n+3 / 2} & =\tilde{x}_{n+1 / 2}+\Delta t v\left(\tilde{x}_{n+1 / 2}, t_{n+1 / 2}\right) \\
x_{n+1} & =\frac{1}{3} x_{n}+\frac{2}{3} \tilde{x}_{n+3 / 2}
\end{aligned}
$$

RK4

- Often most bang for the buck

$$
\begin{aligned}
v_{1} & =v\left(x_{n}, t_{n}\right) \\
v_{2} & =v\left(x_{n}+\frac{1}{2} \Delta t v_{1}, t_{n+1 / 2}\right) \\
v_{3} & =v\left(x_{n}+\frac{1}{2} \Delta t v_{2}, t_{n+1 / 2}\right) \\
v_{4} & =v\left(x_{n}+\Delta t v_{3}, t_{n+1}\right) \\
x_{n+1} & =x_{n}+\Delta t\left(\frac{1}{6} v_{1}+\frac{2}{6} v_{2}+\frac{2}{6} v_{3}+\frac{1}{6} v_{4}\right)
\end{aligned}
$$

Selecting Time Steps

- Hack: try until it looks like it works
- Stability based:
- Figure out a bound on magnitude of Jacobian
- Scale back by a fudge factor (e.g. 0.9, 0.5)
- Try until it looks like it works... (remember all the dubious assumptions we made for linear stability analysis!)
- Why is this better than just hacking around in the first place?
- Adaptive error based:
- Usually not worth the trouble in graphics

Selecting Time Steps

Time Stepping

- Sometimes can pick constant Δt
- One frame, or $1 / 8$ th of a frame, or ...
- Often need to allow for variable Δt
- Changing stability limit due to changing Jacobian
- Difficulty in Newton converging
-
- But prefer to land at the exact frame time
- So clamp $\Delta \mathrm{t}$ so you can't overshoot the frame

Example Time Stepping Algorithm

- Set done = false
- While not done
- Find good Δt
- If $t+\Delta t \geq t_{\text {frame }}$
- Set $\Delta \mathrm{t}=\mathrm{t}_{\text {trame }}-\mathrm{t}$
- Set done = true
- Else if $\mathrm{t}+1.5 \Delta \mathrm{t} \geq \mathrm{t}_{\text {frame }}$
- Set $\Delta \mathrm{t}=0.5\left(\mathrm{t}_{\text {rame }}-\mathrm{t}\right)$
- ...process time step...
- Set $t=t+\Delta t$
- Write out frame data, continue to next frame

Large Time Steps

- Look at the test equation $\frac{d x}{d t}=\lambda x$
- Exact solution is

$$
x\left(t_{n+1}\right)=e^{\lambda \Delta t} x\left(t_{n}\right)=\left(1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\ldots\right) x\left(t_{n}\right)
$$

- Explicit methods approximate this with polynomials (e.g. Taylor)
- Polynomials must blow up as t gets big
- Hence explicit methods have stability limit
- We may want a different kind of approximation that drops to zero as Δt gets big
- Avoid having a small stability limit when error says it should be fine to take large steps ("stiffness")

Implicit Methods

Simplest stable approximation

- Instead use $e^{\lambda \Delta t} \approx \frac{1}{1-\lambda \Delta t}$
- That is, $x_{n+1}=\frac{1}{1-\lambda \Delta t} x_{n}$
- Rewriting: $x_{n+1}=x_{n}+\Delta t \lambda x_{n+1}$
- This is an "implicit" method: the next x is an implicit function of the previous x
- Need to solve equations to figure it out

Backward Euler

- The simplest implicit method:

$$
x_{n+1}=x_{n}+\Delta t v\left(x_{n+1}, t_{n+1}\right)
$$

- First order accurate
- Test equation shows stable when $|1-\lambda \Delta t|>1$
- This includes everything except a circle in the positive real-part half-plane
- It's stable even when the physics is unstable!
- This is the biggest problem: damps out motion unrealistically

Newton's Method

- For more strongly nonlinear v , need to iterate:
- Start with guess x_{n} for $\mathrm{x}_{\mathrm{n}+1}$ (for example)
- Linearize around current guess, solve linear system for next guess
- Repeat, until close enough to solved
- Note: Newton's method is great when it works, but it might not work
- If it doesn't, can reduce time step size to make equations easier to solve, and try again

Aside: Solving Systems

- If v is linear in x, just a system of linear equations
- If very small, use determinant formula
- If small, use LAPACK
- If large, life gets more interesting...
- If v is mildly nonlinear, can approximate with linear equations ("semi-implicit")

$$
\begin{aligned}
x_{n+1} & =x_{n}+\Delta t v\left(x_{n+1}\right) \\
& \approx x_{n}+\Delta t\left(v\left(x_{n}\right)+\frac{\partial v\left(x_{n}\right)}{\partial x}\left(x_{n+1}-x_{n}\right)\right)
\end{aligned}
$$

Newton's Method: B.E.

- Start with $\mathrm{x}^{0}=\mathrm{x}_{\mathrm{n}}$ (simplest guess for $\mathrm{x}_{\mathrm{n}+1}$)
- For $\mathrm{k}=1,2, \ldots$ find $\mathrm{x}^{\mathrm{k}+1}=\mathrm{x}^{\mathrm{k}}+\Delta \mathrm{x}$ by solving

$$
\begin{aligned}
& x^{k+1}=x_{n}+\Delta t\left(v\left(x^{k}\right)+\frac{\partial v\left(x^{k}\right)}{\partial x}\left(x^{k+1}-x^{k}\right)\right) \\
\Rightarrow & \left(I-\Delta t \frac{\partial v\left(x^{k}\right)}{\partial x}\right) \Delta x=x_{n}+\Delta t v\left(x^{k}\right)-x^{k}
\end{aligned}
$$

- To include line-search for more robustness, change update to $x^{k+1}=x^{k}+\alpha \Delta x$ and choose $0<\alpha \leq 1$ that reduces $\left\|x_{n}+\Delta t v\left(x^{k+1}, t_{n+1}\right)-x^{k+1}\right\|$
- Stop when right-hand side is small enough, set $\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}^{\mathrm{k}}$

Trapezoidal Rule

- Can improve by going to second order:

$$
x_{n+1}=x_{n}+\Delta t\left(\frac{1}{2} v\left(x_{n}, t_{n}\right)+\frac{1}{2} v\left(x_{n+1}, t_{n+1}\right)\right)
$$

- This is actually just a half step of F.E., followed by a half step of B.E.
- F.E. is under-stable, B.E. is over-stable, the combination is just right
- Stability region is the left half of the plane: exactly the same as the physics!
- Really good for pure rotation (doesn't amplify or damp)

Monotonicity and Implicit Methods

- Backward Euler is unconditionally monotone
- No problems with oscillation, just too much damping
- Trapezoidal Rule suffers though, because of that half-step of F.E.
- Beware: could get ugly oscillation instead of smooth damping
- For nonlinear problems, quite possibly hit instability

Monotonicity

- Test equation with real, negative λ
- True solution is $x(t)=x_{0} \mathrm{e}^{\lambda t}$, which smoothly decays to zero, doesn't change sign (monotone)
- Forward Euler at stability limit:
- $x=x_{0},-x_{0}, x_{0},-x_{0}, \ldots$
- Not smooth, oscillating sign: garbage!
- So monotonicity limit stricter than stability
- RK3 has the same problem
- But the even order RK are fine for linear problems
- TVD-RK3 designed so that it's fine when F.E. is, even for nonlinear problems!

Summary 1

- Particle Systems: useful for lots of stuff
- Need to move particles in velocity field
- Forward Euler
- Simple, first choice unless problem has oscillation/rotation
- Runge-Kutta if happy to obey stability limit
- Modified Euler may be cheapest method
- RK4 general purpose workhorse
- TVD-RK3 for more robustness with nonlinearity (more on this later in the course!)

Summary 2

- If stability limit is a problem, look at implicit methods
- e.g. need to guarantee a frame-rate, or explicit time steps are way too small
- Trapezoidal Rule
- If monotonicity isn't a problem
- Backward Euler
- Almost always works, but may over-damp!

