
Cloth Collisions/Contact

• Critical part of real-world clothing sims is collision

– Not too many simple flags / curtains / table cloths in movies!

• This part of the course is concerned with making collisions

1) good-looking,

2) robust, and

3) fast

in that order

• References:

– Provot, GI’97

– Bridson, Fedkiw, & Anderson, SIGGRAPH’02

– Bridson, Marino, & Fedkiw, SCA’03

Challenges

• Cloth is thin

– Once you have a penetration, it’s very obvious

– Simulation might not be able to recover

• Cloth is flexible and needs many DOF

– Dozens or hundreds of triangles, in many layers,

can be involved simultaneously in collision area

• Cloth simulations are stressful

– If something can break, it will…

Outline of Solution

• Separation from internal dynamics

• Repulsion forces

– Well-conditioned, smooth, efficient for most situations

• Geometric collisions

– Robust for high-velocity impacts

• Impact zones

– Robust and scalable for highly constrained situations

Separation from internal dynamics

Separation

• Simplify life by separating internal forces (stretching,

bending) from collision forces

• Assume black-box internal dynamics:

collision module is given

1) x0 at start of collision timestep, and

2) x1 candidate state at end

and then returns

3) xnew collision-free positions

• Time integrator responsible for incorporating this

back into simulation

Example

• Start of timestep, x0 (saved for collisions)

Example

• Take one or more internal dynamics steps

(ignoring collisions)

Example

• And get to x1, candidate positions at end of

collision step

Example

• Looking at motion x0 to x1, collision module

resolves collisions to get xnew

Example

• Time integrator takes xnew and incorporates

collision impulses into velocity, continues on

• For n=0, 1, 2, …

– (x, v) = advance_internal_dynamics(xn, vn, dt)

– xn+1 = solve_collisions(xn, x)

– dv = (xn+1 - x)/dt

– Optional:

smooth dv with damping dynamics

e.g. dv = dvraw + dt M-1 Fdamp(xn+1, dv)

– vn+1 = v+dv

Algorithm

• For n=0, 1, 2, …

– (x, v) = advance_internal_dynamics(xn, vn, dt)

– xn+1 = solve_collisions(xn, x)

– dv = (xn+1 - x)/dt

– Optional:

smooth dv with damping dynamics

e.g. dv = dvraw + dt M-1 Fdamp(xn+1, dv)

– vn+1 = v+dv

Notes

• Collisions are synchronized, fixed time step is fine

• Cruder algorithm shown in [BFA’02]

• If elastic collisions are needed, add extra collision step using

initial velocities vn

– see Guendelman, Bridson, Fedkiw, SIGGRAPH’03

• Solve_collisions() only needs x0 and x1:

velocity is the difference v=(x1-x0) when needed

• Assuming linear velocity dependence in velocity smoothing

step

• Rest of talk: what to do in solve_collisions()

Repulsion Based Forces

Repulsions

• Look at old (collision-free) positions x0

• If the cloth is too close to itself or something else,

apply force to separate it

• Use these for modeling:

– Cloth thickness (how close are repulsions active)

– Cloth compressibility (how strong are they)

• Do not rely on them to stop all collisions

– Extending influence and/or making them stiffer detracts from

look of cloth, slows down simulation, …

Proximity Detection

• Two ways triangle meshes can be close:

– Point close to triangle

– Edge close to edge

• In both cases we will want to know

barycentric coordinates of closest points

Point-Triangle Proximity

• Solve for barycentric

coordinates of closest point

on plane of triangle

• If a barycentric coordinate

is negative, skip this pair

(edge-edge will pick it up)

x0 x1

x3

x2

x
13

2

x
13

ix
23

x
13

ix
23

x
23

2

!

"
##

$

%
&&
a

b

!
"#

$
%&
=

x
13

ix
03

x
23

ix
03

!
"#

$
%&

c = 1' a ' b
ax1+bx2+cx3

Edge-Edge Proximity

• Solve for barycentric

coordinates of closest points

on infinite lines

• Clamp to finite segments - one

that moved furthest is correct,

project onto other line and

clamp again for other point

x0

x1

x2

x3

x
01

2

x
01

ix
32

x
01

ix
32

x
32

2

!

"
##

$

%
&&
a

b

!
"#

$
%&
=

x
01

ix
31

x
32

ix
31

!
"#

$
%&

bx2+(1-b)x3

ax0+(1-a)x1

Proximity Acceleration

• Put triangles in bounding volumes, only check

elements if bounding volumes are close

• Organize bounding volumes for efficient culling

• Background grid works fine if triangles similar sizes

– Check each element against others in its grid cell or nearby

cells (within cloth thickness)

• Bounding volume hierarchies useful too

– Prune checks between distant BV’s and their children

BV Hierarchy Algorithm

• Put pair of root nodes on stack

• While stack not empty:

– Pop the top pair of BV’s

– If they are close or overlapping:

 if leaves: check mesh elements

 else: push all pairs of children onto the stack

Computing Each Repulsion

• Direction of repulsion n:

direction between closest points

– In degenerate cases can use triangle normal or

normalized edge cross-product

• Several choices for repulsion:

– Damped spring between closest points, tries to pull

them to cloth thickness apart

– Kinematic result: move closest points some

fraction of the way to cloth thickness apart

Finding the Impulse

• Example: point-triangle

– Want to move closest points apart by distance d

– Assume impulse distributed to corners of triangle by

barycentric weights:

– Then solve for impulse: (scripted nodes have " mass)

x
0

new
= x

0
+

1

m0
In

x
1

new
= x

1
! a

1

m1
In

x
2

new
= x

2
! b

1

m2
In

x
3

new
= x

3
! c

1

m3
In

(x
0

new ! ax
1

new ! bx
2

new ! cx
3

new
) ! (x

0
! ax

1
! bx

2
! cx

3
)"# $%in = d

1

m
0

+
a
2

m
1

+
b
2

m
2

+
c
2

m
3

&

'(
)

*+
I = d

Friction

• Relative velocity:

v=(x0
1-x0

0)-a(x1
1-x1

0)-b(x2
1-x2

0)-c(x3
1-x3

0)

• Tangential velocity: vT=v-(v•n)n

• Static: vT
new=0 as long as |FT| < µFN

• Kinetic: If vT
new!0 then apply force |FT| = µFN

• Integrate forces in time: F!"v

• Combine into one formula:

v
T

new
= max 0,1! µ

"v
N

v
T

#

$%
&

'(
v
T

Robustness Problem

• Repulsions only test for proximity at one time

• Fast moving cloth can collide in the middle of the

time step, and repulsions won’t see it

• Even if repulsions catch a fast collision, they may

not resolve it

• End result: cloth goes through itself or objects

– Once on the wrong side, repulsions will actively keep it there

– Untangling is dodgy for self-intersections

(but see Baraff et al, SIGGRAPH’03)

Robust Geometric Collisions

Collision Detection

• Not interference (“do the meshes intersect?”),

but true collision detection

(“do the trajectories hit at any intermediate time?”)

• Again: meshes can collide in two ways

– Point hits triangle, edge hits edge

• Approach (Provot’97):

– Assume constant velocity of nodes through timestep

– Solve for times when nodes coplanar (cubic in t)

– Check proximity (some tolerance) at possible collision times

Defining the Cubic

• Assume xi(t) = xi + t vi (with 0 # t # 1)

• Coplanar when tetrahedral volume of

(x0,x1,x2,x3) is zero, i.e. when

• Reduces to a cubic in t:

x
1
(t) ! x

0
(t), x

1
(t) ! x

0
(t), x

1
(t) ! x

0
(t)[] = 0

v
10
,v
20
,v
30[]t 3 + x

10
,v
20
,v
30[] + v

10
, x

20
,v
30[] + v

10
,v
20
, x

30[]()t 2

+ x
10
, x

20
,v
30[] + x

10
,v
20
, x

30[] + v
10
, x

20
, x

30[]()t + x
10
, x

20
, x

30[] = 0

Solving the Cubic

• We can’t afford to miss any collisions:

have to deal with floating-point error

– Closed form solution not so useful

• Take a root-finding approach:

– Solve derivative (quadratic) for critical points

– Find subintervals of [0,1] where there could be roots

– Find roots in each subinterval with a sign change using

secant method

– If cubic evaluates close enough to zero at any point (e.g.

subinterval boundaries), count as a root -- even with no sign

change

Acceleration

• Extend bounding volumes to include entire

trajectory of triangle

• Then acceleration is exactly the same as for

proximity detection

Collision Impulse

• Use the normal of the triangle, or normalized

cross-product of the edges, at collision time

• Inelastic collisions assumed:

want relative normal velocity to be zero

afterwards

• Solve for impulse exactly as with repulsions

• Friction (tangential velocity modification) also

works exactly the same way

Iteration

• Each time we collide a pair, we modify their

end-of-step positions

• This changes trajectories of coupled

elements: could cause new collisions

• So generate the list of potentially colliding

pairs, process them one at a time updating

xnew as we go

• Then generate a new list -- keep iterating

1) Scalability Problem

• Resolving one pair of colliding elements can

cause a coupled pair to collide

– Resolving that can cause the first to collide again

• Resolving the first ones again can cause others to collide

– And so on…

• Easy to find constrained situations which

require an arbitrary number of iterations

2) Modeling Problem

• Chainmail friction: wrinkles stick too much

– Triangles behave like rigid plates,

must be rotated to slide over each other,

takes too much torque

3) Robustness Problem

• Cloth can get closer and closer,

 until…

floating-point error means we’re not sure

which side things are on

• To be safe we need cloth to stay reasonably

well separated

Impact Zones

Attack Scalability Issue

• Pairwise impulses are too local:

need global resolution method

– [Provot’97, BFA’02]: rigid impact zones

• Note: a set of intersection-free triangles

remain intersection-free during rigid motion

• So when a set of elements (“impact zone”)

collides, rigidify their motion to resolve

Impact Zones

• Initially each vertex is its own impact zone

• Look for point-triangle and edge-edge

collisions between distinct impact zones:

– Merge all involved impact zones (at least 4 vertices)

into a single impact zone

– Rigidify motion of new impact zone

• Keep looking until everything is resolved

Rigidifying

• Need to conserve total linear and angular

momentum of impact zone:

– Compute centre of mass

– Compute linear and angular momentum

– Compute total mass and inertia tensor of vertices

– Solve for velocity and angular velocity

– Compute each new vertex position from translation+rotation

• Treat any scripted vertices as having " mass

• Note: if impact zone spans non-rigid scripted

vertices, you’re in trouble…. try cutting the timestep

1) Damping Problem

• Rigidifying eliminates more relative motion

than desired: infinite friction

• Could see rigid clumps in motion

2) Robustness Problem

• Just like pair-wise impulses, cloth may get

closer and closer in simulation

• At some point, floating-point error causes

collision detection to break down

• Impact zones will never separate then

Putting it Together

Three Methods

• Repulsions

 ! cheap, well behaved

 " not robust

• Collisions

 ! can catch high velocity events

 " not scalable in constrained situations

 " “chainmail” false friction

 " robustness problem when cloth gets too close

• Impact Zones

 ! scalably robust

 " over-damped dynamics

 " robustness problem when cloth gets too close

Pipeline

• First use repulsions

– Handles almost all interaction (contact mostly)

– Keeps cloth nicely separated

– Models thickness and compressibility

• Then run geometric collisions on that output

– Catches isolated high velocity events accurately

• Finally use impact zones as a last resort

– In the rare case something remains

• Note: repulsions make it all work well

