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Notes

! Required reading:
• Baraff & Witkin, “Large steps in cloth

animation”, SIGGRAPH!98

• Grinspun et al., “Discrete shells”, SCA!03

• Bridson et al., “Simulation of clothing with
folds and wrinkles”, SCA!03
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1D Elastic Continuum

! From last class: elastic rod
• linear density “rho” (not necessarily constant)
• Young!s modulus E (not necessarily constant)

• Paratemerized by p

! If homogenous, simplifies to:
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Sound waves

! Try solution x(p,t)=x0(p-ct)

! And x(p,t)=x0(p+ct)

! So speed of “sound” in rod is

! Courant-Friedrichs-Levy (CFL) condition:
• Numerical methods only will work if information

transmitted numerically at least as fast as in reality
(here: the speed of sound)

• Usually the same as stability limit for good explicit
methods [what are the eigenvalues here]

• Implicit methods transmit information infinitely fast
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Why?

! Are sound waves important?
• Visually? Usually not

! However, since speed of sound is a material
property, it can help us get to higher dimensions

! Speed of sound in terms of one spring (using
linear density m/L) is

! So in higher dimensions, just pick k so that c is
constant
• m is mass around spring [triangles, tets]

• Optional reading: van Gelder
� 

c =
kL

m
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Potential energy

! Another way to look at the elastic spring forces:
through potential energy

! Recall for a system at position(s) x, potential
energy W(x) gives the force

! For example, this gives conservation of total
energy K+E:
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Spring potential

! For a single spring,

• Note we!re squaring the percent deformation (so this
always increases as we move away from
undeformed), and scaling by the strength of spring
and by the length (amount of material it represents)

! To get the force on i, differentiate w.r.t. xi:
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1D Continuum potential

! Add up the potential energies for each spring to
approximate the total potential energy for the
elastic rod:

! Take the limit as "p goes to zero:

! Now: how do we get forces out of this? The
negative gradient of W w.r.t. x(p)?
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Directional derivatives
(regular calculus)

! Pick a direction, or test vector, q

! Direction derivative along q is:

! Or alternatively

! And the gradient #W/#x is the vector s.t.

D
q
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!"0

W (x + !q) #W (x)

!

DqW (x) = !g (0) where g(") =W (x + "q)
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The variational derivative

! We want to take the “gradient” of a continuum
potential energy to get the force density:

! But how do you differentiate w.r.t. a function
x(p)?

! Let!s first look at a directional derivative: look at
the energy at x+!q
• q is a direction, or test function
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The variational derivative 2

! Now differentiate w.r.t. the scalar:

! And evaluate at 0 to get the directional derivative
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The variational derivative 3

! We want to make it look like an inner-product of
the “gradient” with q()
• Use integration by parts:

! Ignoring boundary conditions for now, we see
that the variational derivative of W at some
interior point p is just:
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Force density

! The elastic force density is the negative of the
variational derivative at a point:

! The acceleration of that point is force density
divided by mass density:

! Which is exactly what we got before!
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Discretized potential

! Now we have an alternative way to
discretize the equation:
• Approximate the potential energy integral with

a discrete sum

• Take the gradient to get forces

! This approach generalizes to all sorts of
forces

! Let!s do it for multi-dimensional springs
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Multi-dimensional spring potential

! Change the L scale in the 1D spring potential to
be the area/volume around the spring
• When we add up, we get an approximation of an

integral over the elastic object

! Then get the spring force on i due to j:
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Bending

! For simulating cloth and thin shells, also
need forces to resist bending

! Nontrivial to directly figure out such a force
on a triangle mesh

! Even harder to make sure it!s roughly
mesh-independent

! So let!s attack the problem with a potential
energy formulation
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Bending energy

! Integrate mean curvature squared over the
surface:

! Let!s bypass the continuum formulation, and
jump to a discrete approximation of this integral

! Split mesh up into regions around “hinges”
(common edges between triangles)

• At each interior edge e, have bending stiffness Be,
curvature estimate !e and area of region Ae
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Edge curvature estimate

! Look at how the hinge is bent
• Dihedral angle between the incident triangles

! Think of fitting a cylinder of radius R parallel to
edge, mean curvature is 1/(2R)
• [side-view of triangle pair: angle between normals is

theta, triangle altitudes are h1 and h2]

! For small bend angles (limit as mesh is refined!)
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Discrete bending energy

! As a rough approximation then, using
Ae=|e|(h1+h2)/6:

! Treat all terms except theta as constant
(measured from initial mesh), differentiate
that w.r.t. positions x
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Bending forces

! See e.g. Bridson et al. “Simualtion of
clothing…” for reasonable expressions for
forces
• Additional simplification: replace theta with a

similarly-behaved trig function that can be
directly computed

• Warning: derivation is quite different!


