Notes

- Assignment 2 is up

Modern FEM

v Galerkin framework (the most common)
v Find vector space of functions that solution (e.g. X(p)) lives in

- E.g. bounded weak 1st derivative: H^{1}
v Say the PDE is $L[X]=0$ everywhere ("strong")
v The "weak" statement is $\int \mathrm{Y}(\mathrm{p}) \mathrm{L}[\mathrm{X}(\mathrm{p})] \mathrm{dp}=0$ for every Y in vector space
\checkmark Issue: L might involve second derivatives
- E.g. one for strain, then one for div sigma
- So L , and the strong form, difficult to define for H^{1}
v Integration by parts saves the day

Weak Momentum Equation

- Ignore time derivatives - treat acceleration as an independent quantity
- We discretize space first, then use "method of lines": plug in any time integrator

$$
\begin{aligned}
& L[X]=\rho \ddot{X}-f_{\text {body }}-\nabla \cdot \sigma \\
& \begin{aligned}
\int_{\Omega} Y L[X] & =\int_{\Omega} Y\left(\rho \ddot{X}-f_{\text {body }}-\nabla \cdot \sigma\right) \\
& =\int_{\Omega} Y \rho \ddot{X}-\int_{\Omega} Y f_{\text {body }}-\int_{\Omega} Y \nabla \cdot \sigma \\
& =\int_{\Omega} Y \rho \ddot{X}-\int_{\Omega} Y f_{\text {body }}+\int_{\Omega} \sigma \nabla Y
\end{aligned}
\end{aligned}
$$

Making it finite

- The Galerkin FEM just takes the weak equation, and restricts the vector space to a finitedimensional one
- E.g. Continuous piecewise linear - constant gradient over each triangle in mesh, just like we used for Finite Volume Method
- This means instead of infinitely many test functions Y to consider, we only need to check a finite basis
- The method is defined by the basis
- Very general: plug in whatever you want polynomials, splines, wavelets, RBF's, ...

Linear Triangle Elements

- Simplest choice
- Take basis $\left\{\phi_{i}\right\}$ where $\phi_{i}(p)=1$ at p_{i} and 0 at all the other p_{j} 's
- It's a "hat" function
v Then $X(p)=\sum_{i} x_{i} \phi_{i}(p)$ is the continuous piecewise linear function that interpolates particle positions
v Similarly interpolate velocity and acceleration
\checkmark Plug this choice of X and an arbitrary $Y=\phi_{j}$ (for any j) into the weak form of the equation
v Get a system of equations (3 eq. for each j)

The equations

$\int_{\Omega} \phi_{j} \sum_{i} \rho \ddot{x}_{i} \phi_{i}-\int_{\Omega} \phi_{j} f_{b o d y}+\int_{\Omega} \sigma \nabla \phi_{j}=0$
$\sum_{i} \int_{\Omega} \rho \phi_{j} \phi_{i} \ddot{x}_{i}=\int_{\Omega} \phi_{j} f_{b o d y}-\int_{\Omega} \sigma \nabla \phi_{j}$

- Note that ϕ_{j} is zero on all but the triangles surrounding j, so integrals simplify -Also: naturally split integration into separate triangles
cs533d-term1-2005

Change in momentum term

- Let $m_{i j}=\int \rho \phi_{i} \phi_{j}$
- Then the first term is just $\sum_{i} m_{j i} \ddot{x}_{i}$
- Let $\mathrm{M}=\left[\mathrm{m}_{\mathrm{ij}}\right]$: then first term is $M \ddot{x}$
- M is called the mass matrix
- Obviously symmetric (actually SPD)
- Not diagonal!
- Note that once we have the forces (the other integrals), we need to invert M to get accelerations

Body force term

- Usually just gravity: $\mathrm{f}_{\text {body }}=\rho g$
\checkmark Rather than do the integral with density all over again, use the fact that ϕ_{I} sum to 1
- They form a "partition of unity"
- They represent constant functions exactly - just about necessary for convergence
- Then body force term is gM1
- More specifically, can just add g to the accelerations; don't bother with integrals or mass matrix at all

Stress term

- Calculate constant strain and strain rate (so constant stress) for each triangle separately
- Note $\nabla \phi_{j}$ is constant too
- So just take $\sigma \nabla \phi_{j}$ times triangle area
v [derive what $\nabla \phi_{j}$ is]
- Magic: exact same as FVM!
- In fact, proof of convergence of FVM is often (in other settings too) proved by showing it's equivalent or close to some kind of FEM

Lumped Mass

- Inverting mass matrix unsatisfactory
- For particles and FVM, each particle had a mass, so we just did a division
- Here mass is spread out, need to do a big linear solve - even for explicit time stepping
- Idea of lumping: replace M with the "lumped mass matrix"
- A diagonal matrix with the same row sums
- Inverting diagonal matrix is just divisions - so diagonal entries of lumped mass matrix are the particle masses
- Equivalent to FVM with centroid-based volumes

The algorithm

- Loop over triangles
- Loop over corners
- Compute integral terms
- only need to compute M once though - it's constant
- End up with row of M and a "force"
- Solve Ma=f
- Plug this a into time integration scheme

Consistent vs. Lumped

- Original mass matrix called "consistent"
- Turns out its strongly diagonal dominant (fairly easy to solve)
- Multiplying by mass matrix = smoothing
- Inverting mass matrix = sharpening
- Rule of thumb:
- Implicit time stepping - use consistent M (counteract over-smoothing, solving system anyways)
- Explicit time stepping - use lumped M (avoid solving systems, don't need extra sharpening)

Locking

- Simple linear basis actually has a major problem: locking
- But graphics people still use them all the time...
- Notion of numerical stiffness
- Instead of thinking of numerical method as just getting an approximate solution to a real problem,
- Think of numerical method as exactly solving a problem that's nearby
- For elasticity, we're exactly solving the equations for a material with slightly different (and not quite homogeneous/isotropic) stiffness
- Locking comes up when numerical stiffness is MUCH higher than real stiffness

Quadrature

- Formulas for linear triangle elements and constant density simple to work out
- Formulas for subdivision surfaces (or high-order polynomials, or splines, or wavelets...) and varying density are NASTY
- Instead use "quadrature"
- I.e. numerical approximation to integrals
- Generalizations of midpoint rule
- E.g. Gaussian quadrature (for intervals, triangles, tets) or tensor products (for quads, hexes)
- Make sure to match order of accuracy [or not]

Locking and linear elements

- Look at nearly incompressible materials
- Can a linear triangle mesh deform incompressibly?
- [derive problem]
- Then linear elements will resist far too much: numerical stiffness much too high
- Numerical material "locks"
- FEM isn't really a black box!
- Solutions:
- Don't do incompressibility
- Use other sorts of elements (quads, higher order)
- ...

Accuracy

- At least for SPD linear problems (e.g. linear elasticity) FEM selects function from finite space that is "closest" to solution
- Measured in a least-squares, energy-norm sense
- Thus it's all about how well you can approximate functions with the finite space you chose
- Linear or bilinear elements: $\mathrm{O}\left(\mathrm{h}^{2}\right)$
- Higher order polynomials, splines, etc.: better

Hyper-elasticity

- Another common way to look at elasticity
- Useful for handling weird nonlinear compressibility laws, for reduced dimension models, and more
- Instead of defining stress, define an elastic potential energy
- Strain energy density $W=W(A)$
- $\mathrm{W}=0$ for no deformation, $\mathrm{W}>0$ for deformation
- Total potential energy is integral of W over object
- This is called hyper-elasticity or Green elasticity
- For most (the ones that make sense) stress-strain relationships can define W
- E.g. linear relationship: $\mathrm{W}=\sigma: \varepsilon=$ trace $\left(\sigma^{\top} \varepsilon\right)$

Variational Derivatives

- Force is the negative gradient of potential
- Just like gravity
-What does this mean for a continuum?
- $\mathrm{W}=\mathrm{W}(\partial \mathrm{X} / \partial \mathrm{p})$, how do you do $-\mathrm{d} / \mathrm{dX}$?
- Variational derivative: $W_{\text {toolat }}[X+\varepsilon Y]=\int W\left(\frac{\partial X}{\partial p}+\varepsilon \frac{\partial Y}{\partial p}\right)$
- So variational derivative is - $\nabla \cdot \partial \mathrm{W} / \partial \mathrm{A}$
- And $f=\nabla \cdot \partial W / \partial A$
- Then stress is $\partial W / \partial A$
\checkmark Easy way to do reduced dimensional objects (cloth etc.)

$$
\begin{aligned}
& \approx \int W\left(\frac{\partial X}{\partial p}\right)+\varepsilon \frac{\partial W}{\partial A} \frac{\partial Y}{\partial p} \\
& =W_{\text {total }}+\varepsilon \int \frac{\partial W}{\partial A} \frac{\partial Y}{\partial p} \\
& =W_{\text {total }}-\varepsilon \int Y \nabla \cdot \frac{\partial W}{\partial A}
\end{aligned}
$$

Numerics

- Simpler approach: find discrete $\mathrm{W}_{\text {total }}$ as a sum of W's for each element
- Evaluate just like FEM, or any way you want
- Take gradient w.r.t. positions $\left\{\mathrm{x}_{\mathrm{i}}\right\}$
- Ends up being a Galerkin method
- Also note that an implicit method might need Jacobian = negative Hessian of energy
- Must be symmetric, and at least near stable configurations must be negative definite

