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Notes

! Assignment 2 is up

2cs533d-term1-2005

Modern FEM

! Galerkin framework (the most common)

! Find vector space of functions that solution (e.g. X(p))
lives in
• E.g. bounded weak 1st derivative: H1

! Say the PDE is L[X]=0 everywhere (“strong”)

! The “weak” statement is ! Y(p)L[X(p)]dp=0
for every Y in vector space

! Issue: L might involve second derivatives
• E.g. one for strain, then one for div sigma

• So L, and the strong form, difficult to define for H1

! Integration by parts saves the day
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Weak Momentum Equation

! Ignore time derivatives - treat acceleration
as an independent quantity
• We discretize space first, then use

“method of lines”: plug in any time integrator
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Making it finite

! The Galerkin FEM just takes the weak equation,
and restricts the vector space to a finite-
dimensional one
• E.g. Continuous piecewise linear - constant gradient

over each triangle in mesh, just like we used for Finite
Volume Method

! This means instead of infinitely many test
functions Y to consider, we only need to check a
finite basis

! The method is defined by the basis
• Very general: plug in whatever you want -

polynomials, splines, wavelets, RBF"s, …
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Linear Triangle Elements

! Simplest choice

! Take basis {"i} where
"i(p)=1 at pi and 0 at all the other pj"s
• It"s a “hat” function

! Then X(p)=#i xi"i(p) is the continuous piecewise linear
function that interpolates particle positions

! Similarly interpolate velocity and acceleration

! Plug this choice of X and an arbitrary Y= "j (for any j) into
the weak form of the equation

! Get a system of equations (3 eq. for each j)

6cs533d-term1-2005

The equations
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•Note that "j is zero on all but the triangles

surrounding j, so integrals simplify

•Also: naturally split integration into separate

triangles
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Change in momentum term

! Let

! Then the first term is just

! Let M=[mij]: then first term is
! M is called the mass matrix
• Obviously symmetric (actually SPD)

• Not diagonal!

! Note that once we have the forces (the other
integrals), we need to invert M to get
accelerations
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Body force term

! Usually just gravity: fbody=#g

! Rather than do the integral with density all over
again, use the fact that "I sum to 1
• They form a “partition of unity”

• They represent constant functions exactly - just about
necessary for convergence

! Then body force term is gM1

! More specifically, can just add g to the
accelerations; don"t bother with integrals or
mass matrix at all
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Stress term

! Calculate constant strain and strain rate (so
constant stress) for each triangle separately

! Note $"j is constant too

! So just take %$"j times triangle area

! [derive what $"j is]

! Magic: exact same as FVM!
• In fact, proof of convergence of FVM is often (in other

settings too) proved by showing it"s equivalent or
close to some kind of FEM
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The algorithm

! Loop over triangles
• Loop over corners

• Compute integral terms
! only need to compute M once though - it"s constant

• End up with row of M and a “force”

! Solve Ma=f

! Plug this a into time integration scheme
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Lumped Mass

! Inverting mass matrix unsatisfactory
• For particles and FVM, each particle had a mass, so

we just did a division

• Here mass is spread out, need to do a big linear solve
- even for explicit time stepping

! Idea of lumping: replace M with the “lumped
mass matrix”
• A diagonal matrix with the same row sums

• Inverting diagonal matrix is just divisions - so diagonal
entries of lumped mass matrix are the particle
masses

• Equivalent to FVM with centroid-based volumes
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Consistent vs. Lumped

! Original mass matrix called “consistent”

! Turns out its strongly diagonal dominant (fairly
easy to solve)

! Multiplying by mass matrix = smoothing

! Inverting mass matrix = sharpening

! Rule of thumb:
• Implicit time stepping - use consistent M

(counteract over-smoothing, solving system anyways)

• Explicit time stepping - use lumped M
(avoid solving systems, don"t need extra sharpening)
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Locking

! Simple linear basis actually has a major problem:
locking
• But graphics people still use them all the time…

! Notion of numerical stiffness
• Instead of thinking of numerical method as just getting

an approximate solution to a real problem,

• Think of numerical method as exactly solving a
problem that"s nearby

• For elasticity, we"re exactly solving the equations for a
material with slightly different (and not quite
homogeneous/isotropic) stiffness

! Locking comes up when numerical stiffness is
MUCH higher than real stiffness
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Locking and linear elements

! Look at nearly incompressible materials

! Can a linear triangle mesh deform incompressibly?
• [derive problem]

! Then linear elements will resist far too much: numerical
stiffness much too high

! Numerical material “locks”

! FEM isn"t really a black box!

! Solutions:
• Don"t do incompressibility

• Use other sorts of elements (quads, higher order)

• …
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Quadrature

! Formulas for linear triangle elements and constant
density simple to work out

! Formulas for subdivision surfaces (or high-order
polynomials, or splines, or wavelets…) and varying
density are NASTY

! Instead use “quadrature”
• I.e. numerical approximation to integrals

! Generalizations of midpoint rule
• E.g. Gaussian quadrature (for intervals, triangles, tets) or tensor

products (for quads, hexes)

! Make sure to match order of accuracy [or not]
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Accuracy

! At least for SPD linear problems (e.g.
linear elasticity) FEM selects function from
finite space that is “closest” to solution
• Measured in a least-squares, energy-norm

sense

! Thus it"s all about how well you can
approximate functions with the finite space
you chose
• Linear or bilinear elements: O(h2)

• Higher order polynomials, splines, etc.: better
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Hyper-elasticity

! Another common way to look at elasticity
• Useful for handling weird nonlinear compressibility laws, for

reduced dimension models, and more

! Instead of defining stress, define an elastic potential
energy
• Strain energy density W=W(A)

• W=0 for no deformation, W>0 for deformation

• Total potential energy is integral of W over object

! This is called hyper-elasticity or Green elasticity

! For most (the ones that make sense)
stress-strain relationships can define W

• E.g. linear relationship: W=%:&=trace(%T&)
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Variational Derivatives

! Force is the negative gradient of potential
• Just like gravity

! What does this mean for a continuum?
• W=W($X/$p), how do you do -d/dX?

! Variational derivative:

• So variational derivative is
-$•$W/$A

• And f=$•$W/$A

• Then stress is $W/$A

! Easy way to do reduced
dimensional objects
(cloth etc.)
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Numerics

! Simpler approach: find discrete Wtotal as a sum
of W"s for each element
• Evaluate just like FEM, or any way you want

! Take gradient w.r.t. positions {xi}
• Ends up being a Galerkin method

! Also note that an implicit method might need
Jacobian = negative Hessian of energy
• Must be symmetric, and at least near stable

configurations must be negative definite


