Notes

- Real materials are essentially incompressible (for large deformation - neglecting foams and other weird composites...)
- For small deformation, materials are usually somewhat incompressible
- Imagine stretching block in one direction
- Measure the contraction in the perpendicular directions
- Ratio is v, Poisson's ratio
- [draw experiment; $v=-\frac{\varepsilon_{22}}{\varepsilon_{11}}$]

Putting it together

$$
\begin{aligned}
& E \varepsilon_{11}=\sigma_{11}-v \sigma_{22}-v \sigma_{33} \\
& E \varepsilon_{22}=-v \sigma_{11}+\sigma_{22}-v \sigma_{33} \\
& E \varepsilon_{33}=-v \sigma_{11}-v \sigma_{22}+\sigma_{33}
\end{aligned}
$$

- Can invert this to get normal stress, but what about shear stress?
- Diagonalization...
- When the dust settles,

$$
E \varepsilon_{i j}=(1+v) \sigma_{i j} \quad i \neq j
$$

Inverting...

$$
\sigma=E\left(\frac{1}{1+v} I+\frac{v}{(1+v)(1-2 v)} 1 \otimes 1\right) \varepsilon
$$

- For convenience, relabel these expressions
$\begin{aligned} & \text { - } \lambda \text { and } \mu \text { are called } \\ & \text { the Lamé }\end{aligned} \lambda=\frac{E v}{(1+v)(1-2 v)}$ coefficients
- [incompressibility]

$$
\begin{aligned}
\mu & =\frac{E}{2(1+v)} \\
\sigma_{i j} & =\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j}
\end{aligned}
$$

Rayleigh damping

- We'll need to look at strain rate
- How fast object is deforming
- We want a damping force that resists change in deformation
- Just the time derivative of strain
- For Rayleigh damping of linear elasticity

$$
\sigma_{i j}^{d a m p}=\phi \dot{\varepsilon}_{k k} \delta_{i j}+2 \psi \dot{\varepsilon}_{i j}
$$

Linear elasticity

- Putting it together and assuming constant coefficients, simplifies to

$$
\begin{aligned}
\rho \dot{v} & =f_{\text {body }}+\lambda \nabla \varepsilon_{k k}+2 \mu \nabla \cdot \varepsilon \\
& =f_{\text {body }}+\lambda \nabla \cdot \nabla x+\mu(\nabla \cdot \nabla x+\nabla \nabla \cdot x)
\end{aligned}
$$

- A PDE!
- We'll talk about solving it later

Problems

- Linear elasticity is very nice for small deformation
- Linear form means lots of tricks allowed for speed-up, simpler to code, ..
-But it's useless for large deformation, or even zero deformation but large rotation
- (without hacks)
- Cauchy strain's simplification sees large rotation as deformation...
- Thus we need to go back to Green strain

(Almost) Linear Elasticity

- Use the same constitutive model as before, but with Green strain tensor
- This is the simplest general-purpose elasticity model
- Animation probably doesn't need anything more complicated
- Except perhaps for dealing with incompressible materials

2D Elasticity

- Let's simplify life before starting numerical methods
- The world isn't 2D of course, but want to track only deformation in the plane
- Have to model why
- Plane strain: very thick material, $\varepsilon_{3}=0$ [explain, derive σ_{3}.]
- Plane stress: very thin material, $\sigma_{3}=0$ [explain, derive ε_{3}. and new law, note change in incompressibility singularity]

Finite Volume Method

- Simplest approach: finite volumes
- We picked arbitrary control volumes before
- Now pick fractions of triangles from a triangle mesh
- Split each triangle into 3 parts, one for each corner
- E.g. Voronoi regions
- Be consistent with mass!
- Assume A is constant in each triangle (piecewise linear deformation)
- [work out]
- Note that exact choice of control volumes not critical constant times normal integrates to zero

Finite Element Method

* \#1 most popular method for elasticity problems (and many others too)
- FEM originally began with simple idea:
- Can solve idealized problems (e.g. that strain is constant over a triangle)
- Call one of these problems an element
- Can stick together elements to get better approximation
- Since then has evolved into a rigourous mathematical algorithm, a general purpose black-box method
- Well, almost black-box...

Modern Approach

v Galerkin framework (the most common)
v Find vector space of functions that solution (e.g. X(p)) lives in

- E.g. bounded weak 1st derivative: H^{1}
v Say the PDE is $\mathrm{L}[\mathrm{X}]=0$ everywhere ("strong")
v The "weak" statement is $\int \mathrm{Y}(\mathrm{p}) \mathrm{L}[\mathrm{X}(\mathrm{p})] \mathrm{dp}=0$ for every Y in vector space
\checkmark Issue: L might involve second derivatives
- E.g. one for strain, then one for div sigma
- So L , and the strong form, difficult to define for H^{1}

Integration by parts saves the day

Making it finite

- The Galerkin FEM just takes the weak equation, and restricts the vector space to a finitedimensional one
- E.g. Continuous piecewise linear - constant gradient over each triangle in mesh, just like we used for Finite Volume Method
- This means instead of infinitely many test functions Y to consider, we only need to check a finite basis
- The method is defined by the basis
- Very general: plug in whatever you want polynomials, splines, wavelets, RBF's, .

Weak Momentum Equation

- Ignore time derivatives - treat acceleration as an independent quantity
- We discretize space first, then use "method of lines": plug in any time integrator

$$
\begin{aligned}
L[X] & =\rho \ddot{X}-f_{\text {body }}-\nabla \cdot \sigma \\
\int_{\Omega} Y L[X] & =\int_{\Omega} Y\left(\rho \ddot{X}-f_{\text {body }}-\nabla \cdot \sigma\right) \\
& =\int_{\Omega} Y \rho \ddot{X}-\int_{\Omega} Y f_{\text {boly }}-\int_{\Omega} Y \nabla \cdot \sigma \\
& =\int_{\Omega} Y \rho \ddot{X}-\int_{\Omega} Y f_{\text {boly }}+\int_{\Omega} \sigma \nabla Y
\end{aligned}
$$

cs533d-term1-2005

Linear Triangle Elements

- Simplest choice
- Take basis $\left\{\phi_{i}\right\}$ where
$\phi_{i}(p)=1$ at p_{i} and 0 at all the other p_{j} 's
- It's a "hat" function
v Then $X(p)=\sum_{i} x_{i} \phi_{i}(p)$ is the continuous piecewise linear function that interpolates particle positions
v Similarly interpolate velocity and acceleration
v Plug this choice of X and an arbitrary $Y=\phi_{j}$ (for any j) into the weak form of the equation
\checkmark Get a system of equations (3 eq. for each j)

The equations

$$
\begin{aligned}
& \int_{\Omega} \phi_{j} \sum_{i} \rho \ddot{x}_{i} \phi_{i}-\int_{\Omega} \phi_{j} f_{b o d y}+\int_{\Omega} \sigma \nabla \phi_{j}=0 \\
& \sum_{i} \int_{\Omega} \rho \phi_{j} \phi_{i} \ddot{x}_{i}=\int_{\Omega} \phi_{j} f_{b o d y}-\int_{\Omega} \sigma \nabla \phi_{j}
\end{aligned}
$$

- Note that ϕ_{j} is zero on all but the triangles surrounding j, so integrals simplify -Also: naturally split integration into separate triangles

