

Studying Deformation

- Let's look at a deformable object
 - World space: points x in the object as we see it
 - Object space (or rest pose): points p in some reference configuration of the object
 - (Technically we might not have a rest pose, but usually we do, and it is the simplest parameterization)
- So we identify each point x of the continuum with the label p, where x=X(p)
- The function X(p) encodes the deformation

Going back to 1D

- Worked out that dX/dp-1 was the key quantity for measuring stretching and compression
- Nice thing about differentiating: constants (translating whole object) don't matter
- Call A= $\partial X/\partial p$ the deformation gradient

Strain

- A isn't so handy, though it somehow encodes exactly how stretched/compressed we are
 - Also encodes how rotated we are: who cares?
- We want to process A somehow to remove the rotation part
- ◆ [difference in lengths]
- A^TA-I is exactly zero when A is a rigid body rotation
- Define Green strain

$$G = \frac{1}{2} \left(A^T A - I \right)$$

cs533d-term1-2005

Why the half??

- [Look at 1D, small deformation]
- A=1+ ε
- ν A^TA-I = A²-1 = 2ε+ε² ≈ 2ε
- $\upsilon~$ Therefore $G\approx\epsilon,$ which is what we expect
- υ Note that for large deformation, Green strain grows quadratically
 - maybe not what you expect!
- $\upsilon\,$ Whole cottage industry: defining strain differently

cs533d-term1-2005

Cauchy strain tensor

- Get back to linear, not quadratic
- Look at "small displacement"
 - Not only is the shape only slightly deformed, but it only slightly rotates (e.g. if one end is fixed in place)
- Then displacement x-p has gradient D=A-I
- Then $G = \frac{1}{2} \left(D^T D + D + D^T \right)$
- And for small displacement, first term negligible
- Cauchy strain $\varepsilon = \frac{1}{2} (D + D^T)$
- Symmetric part of displacement gradient
 - Rotation is skew-symmetric part

Analyzing Strain

- Strain is a 3x3 "tensor" (fancy name for a matrix)
- Always symmetric
- What does it mean?
- Diagonalize: rotate into a basis of eigenvectors
 - Entries (eigenvalues) tells us the scaling on the different axes
 - Sum of eigenvalues (always equal to the trace=sum of diagonal, even if not diagonal): approximate volume change
- Or directly analyze: off-diagonals show skew (also known as shear)

Force

- In 1D, we got the force of a spring by simply multiplying the strain by some material constant (Young's modulus)
- In multiple dimensions, strain is a tensor, but force is a vector...
- And in the continuum limit, force goes to zero anyhow---so we have to be a little more careful

cs533d-term1-2005

Conservation of Momentum

- In other words F=ma
- Decompose body into "control volumes"
- Split F into
 - f_{body} (e.g. gravity, magnetic forces, ...) force per unit volume
 - and traction t (on boundary between two chunks of continuum: contact force) dimensions are force per unit area (like pressure)

$$\int_{\Omega_W} f_{body} dx + \int_{\partial \Omega_W} t \, ds = \int_{\Omega_W} \rho \ddot{X} \, dx$$

cs533d-term1-2005 10

Cauchy's Fundamental Postulate

- Traction t is a function of position x and normal n
 - Ignores rest of boundary (e.g. information like curvature, etc.)
- Theorem
 - If t is smooth (be careful at boundaries of object, e.g. cracks) then t is linear in n: t=σ(x)n
- $\upsilon \sigma$ is the Cauchy stress tensor (a matrix)
- $\upsilon~$ It also is force per unit area
- υ Diagonal: normal stress components
- υ Off-diagonal: shear stress components

Cauchy Stress

- From conservation of angular momentum can derive that Cauchy stress tensor σ is symmetric: σ = σ^T
- $\upsilon\,$ Thus there are only 6 degrees of freedom (3D)
 - In 2D, only 3 degrees of freedom
- ν What is σ?
 - That's the job of constitutive modeling
 - Depends on the material (e.g. water vs. steel vs. silly putty)

11

Divergence Theorem

- Try to get rid of integrals
- First make them all volume integrals with divergence theorem:

$$\int_{\partial\Omega_W} \sigma n \, ds = \int_{\Omega_W} \nabla \cdot \sigma \, dx$$

• Next let control volume shrink to zero:

$$f_{body} + \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{\rho} \ddot{X}$$

• Note that integrals and normals were in world space, so is the divergence (it's w.r.t. x not p)

cs533d-term1-2005 13

Constitutive Modeling

- This can get very complicated for complicated materials
- Let's start with simple elastic materials
- We'll even leave damping out
- Then stress σ only depends on strain, however we measure it (say G or ε)

cs533d-term1-2005 14

Linear elasticity Very nice thing about Cauchy strain: it's linear in deformation No quadratic dependence Easy and fast to deal with Natural thing is to make a linear relationship with Cauchy stress σ Then the full equation is linear!

Young's modulus

 Obvious first thing to do: if you pull on material, resists like a spring:

σ=Εε

- $\upsilon~$ E is the Young's modulus
- $\upsilon~$ Let's check that in 1D (where we know what should happen with springs)

15

Example Young's Modulus			
 Some example values for common materials: (VERY approximate) 			
Aluminum:	E=70 GPa	v=0.34	
Concrete:	E=23 GPa	v=0.2	
 Diamond: 	E=950 GPa	v=0.2	
Glass:	E=50 GPa	v=0.25	
 Nylon: 	E=3 GPa	v=0.4	
Rubber:	E=1.7 MPa	v=0.49	
Steel:	E=200 GPa	v=0.3	
		cs533d-term1-2005	17

Poisson Ratio Real materials are essentially incompressible (for large deformation - neglecting foams and other weird composites...) For small deformation, materials are usually somewhat incompressible Imagine stretching block in one direction Measure the contraction in the perpendicular directions

- Ratio is v, Poisson's ratio
- [draw experiment; $v = -\frac{\varepsilon_{22}}{c}$]

cs533d-term1-2005 18

What is Poisson's ratio?

- ◆ Has to be between -1 and 0.5
- ♦ 0.5 is exactly incompressible
 - [derive]
- Negative is weird, but possible [origami]
- ♦ Rubber: close to 0.5
- ◆ Steel: more like 0.33
- Metals: usually 0.25-0.35
- What should cork be?

cs533d-term1-2005

19