

- Inside and outside blue core, regular incompressible flow with buoyancy
- But an interesting boundary condition at the flame front
 - Gaseous fuel and air chemically reacts to produce a different gas with a different density
 - Mass is conserved, so volume has to change
 - Gas instantly expands at the flame front
- And the flame front is moving too
 - At the speed of the flow plus the reaction speed

Interface speed
Interface = flame front = blue core surface
D=V_f-S is the speed of the flame front

It moves with the fuel flow, and on top of that, moves according to reaction speed S
S is fixed for a given fuel mix

We can track the flame front with a level set \$\phi\$

υ Level set moves by

$$\phi_t + D |\nabla \phi| = 0$$

$$\phi_t + u_{LS} \cdot \nabla \phi = 0$$

• Here u_{LS} is u_f -Sn

cs533d-term1-2005

cs533d-term1-2005

Numerical method

- For water we had to work hard to move interface accurately
- Here it's ok just to use semi-Lagrangian method (with reinitialization)
- ♦ Why?
 - We're not conserving volume of blue core if reaction is a little too fast or slow, that's fine
 - Numerical error looks like mean curvature
 - Real physics actually says reaction speed varies with mean curvature!

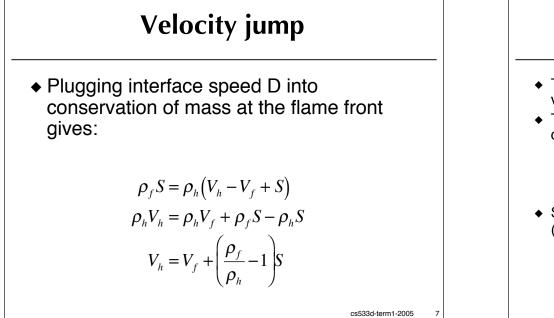
cs533d-term1-2005

Conservation of mass

- Mass per unit area entering flame front is ρ_f(V_f-D) where
 - V_f=u_f•n is the normal component of fuel velocity
 - D is the (normal) speed of the interface
- $\upsilon~$ Mass per unit area leaving flame front is $\rho_h(V_h\text{-}D)$ where
 - V_h=u_h•n is the normal component of hot gaseous products velocity
- $\upsilon~$ Equating the two gives:

$$\rho_f(V_f - D) = \rho_h(V_h - D)$$

cs533d-term1-2005



Ghost velocities

- This is a "jump condition": how the normal component of velocity jumps when you go over the flame interface
- This lets us define a "ghost" velocity field that is continuous
 - When we want to get a reasonable value of u_h for semi-Lagrangian advection of hot gaseous products on the fuel side of the interface, or vice versa (and also for moving interface)
 - When we compute divergence of velocity field
- Simply take the velocity field, add/subtract (ρ_f/ρ_h-1)Sn

Conservation of momentum

- Momentum is also conserved at the interface
- Fuel momentum per unit area "entering" the interface is $\rho_f V_f (V_f D) + p_f$
- Hot gaseous product momentum per unit area "leaving" the interface is

$$\rho_h V_h (V_h - D) + p_h$$

Equating the two gives

$$\rho_f V_f (V_f - D) + p_f = \rho_h V_h (V_h - D) + p_h$$

cs533d-term1-2005

Simplifying

 Make the equation look nicer by taking conservation of mass:

$$\rho_f (V_f - D) = \rho_h (V_h - D)$$

multiplying both sides by -D:

$$\rho_f(-D)(V_f-D) = \rho_h(-D)(V_h-D)$$

and adding to previous slide's equation:

$$\rho_f (V_f - D)^2 + p_f = \rho_h (V_h - D)^2 + p_h$$

cs533d-term1-2005 10

Pressure jump

- This gives us jump in pressure from one side of the interface to the other
- By adding/subtracting the jump, we can get a reasonable continuous extension of pressure from one side to the other
 - For taking the gradient of p to make the flow incompressible after advection
- Note when we solve the Poisson equation density is NOT constant, and we have to incorporate jump in p (known) just like we use it in the pressure gradient

Temperature

- We don't want to get into complex (!) chemistry of combustion
- Instead just specify a time curve for the temperature
 - Temperature known at flame front (T_{ignition})
 - Temperature of a chunk of hot gaseous product rises at a given rate to T_{max} after it's created
 - Then cools due to radiation

Temperature cont'd

- For small flames (e.g. candles) can model initial temperature rise by tracking time since reaction: Y_t+u•∇Y=1 and making T a function of Y
- $\upsilon~$ For large flames ignore rise, just start flame at T_{max} (since transition region is very thin, close to blue core)
- Radiative cooling afterwards:

$$T_t + u \cdot \nabla T = -c_T \left(\frac{T - T_{air}}{T_{max} - T_{air}} \right)$$

cs533d-term1-2005

13

Can do the same as for temperature: initially

- make it a function of time Y since reaction (rising from zero)
 - And ignore this regime for large flames
- Then just advect without change, like before
- Note: both temperature and smoke concentration play back into velocity equation (buoyancy force)

cs533d-term1-2005

Note on fuel

- We assumed fuel mix is magically being injected into scene
 - Just fine for e.g. gas burners
 - Reasonable for slow-burning stuff (like thick wood)
- What about fast-burning material?
 - Can specify another reaction speed S_{fuel} for how fast solid/liquid fuel turned into flammable gas (dependent on temperature)
 - Track level set of solid/liquid fuel just like we did the blue core

SPH

- Smoothed Particle Hydrodynamics
 - A particle system approach
- Get rid of the mesh altogether figure out how to do ∇p etc. with just particles
- $\upsilon\,$ Each particle represents a blurry chunk of fluid
 - (with a particular mass, momentum, etc.)
- $\boldsymbol{\upsilon}$ Lagrangian: advection is going to be easy

Mesh-free?

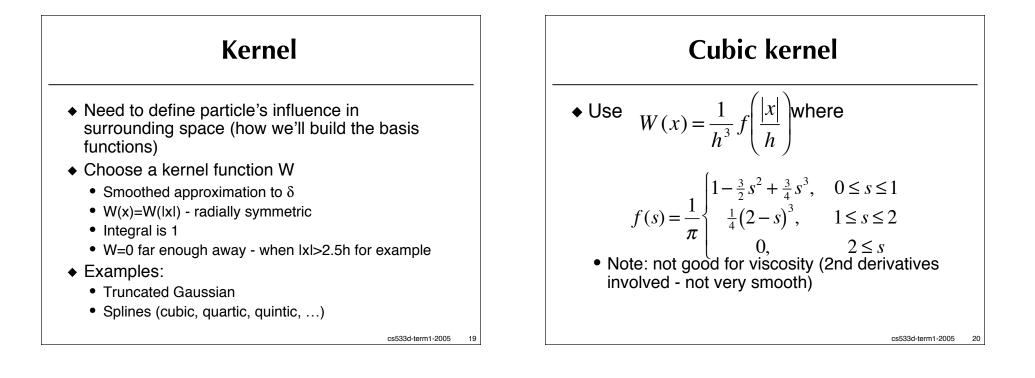
- Mathematically, SPH and particle-only methods are independent of meshes
- Practically, need an acceleration structure to speed up finding neighbouring particles (to figure out forces)
- Most popular structure (for non-adaptive codes, i.e. where h=constant for all particles) is...

a mesh (background grid)

SPH

- SPH can be interpreted as a particular way of choosing forces, so that you converge to solving Navier-Stokes
- [Lucy'77], [Gingold & Monaghan '77], [Monaghan...], [Morris, Fox, Zhu '97], ...
- Similar to FEM, we go to a finite dimensional space of functions
 - Basis functions now based on particles instead of grid elements
 - Can take derivatives etc. by differentiating the real function from the finite-dimensional space

cs533d-term1-2005 18



cs533d-term1-2005

17

Estimating quantities

- Say we want to estimate some flow variable q at a point in space x
- We'll take a mass and kernel weighted average
- Raw version: $Q(x) = \sum_{j} m_{j} q_{j} W(x x_{j})$
 - But this doesn't work, since sum of weights is nowhere close to 1
 - Could normalize by dividing by $\sum_{j} m_{j} W_{j}$ but that involves complicates derivatives...
 - Instead use estimate for normalization at each particle separately (some mass-weighted measure of overlap)

cs533d-term1-2005

cs533d-term1-2005

Smoothed Particle Estimate

- Take the "raw" mass estimate to get density: $\langle \rho(x) \rangle = \sum_{j} m_{j} W (x - x_{j})$
 - [check dimensions]
- Evaluate this at particles, use that to approximately normalize:

$$\langle q(x) \rangle = \sum_{j} q_{j} \frac{m_{j} W(x - x_{j})}{\rho_{j}}$$

cs533d-term1-2005

Incompressible Free Surfaces

- Actually, I lied
 - That is, regular SPH uses the previous formulation
 - For doing incompressible flow with free surface, we have a problem
 - · Density drop smoothly to 0 around surface
 - This would generate huge pressure gradient, compresses surface layer
- So instead, track density for each particle as a primary variable (as well as mass!)
 - Update it with continuity equation
 - Mass stays constant however probably equal for all particles, along with radius

Continuity equation

Recall the equation is

$$\rho_t + u \cdot \nabla \rho = -\rho \nabla \cdot u$$

- We'll handle advection by moving particles around
- So we need to figure out right-hand side
- Divergence of velocity for one particle is $\nabla \cdot v = \nabla \cdot (v_i W(x - x_i)) = v_i \cdot \nabla W_i$
 - $\mathbf{v} \cdot \mathbf{v} = \mathbf{v} \cdot \left(\mathbf{v}_j \mathbf{w} \left(\mathbf{x} \mathbf{x}_j \right) \right) = \mathbf{v}_j \cdot \mathbf{v} \mathbf{w}$
- Multiply by density, get SPH estimate:

$$\langle \rho \nabla \cdot v \rangle_i = \sum_j m_j v_j \cdot \nabla_i W_{ij}$$

Momentum equation

- Without viscosity: $u_t + u \cdot \nabla u = -\frac{1}{\rho} \nabla p + g$
- Handle advection by moving particles
- Acceleration due to gravity is trivial
- Left with pressure gradient
- Naïve approach just take SPH estimate as before

$$\frac{dv_i}{dt} = \left\langle -\frac{1}{\rho} \nabla p \right\rangle = -\sum_j m_j \frac{p_j}{\rho_j^2} \nabla_i W_{ij}$$

cs533d-term1-2005

Conservation of momentum

- Remember momentum equation really came out of F=ma (but we divided by density to get acceleration)
- Previous slide momentum is not conserved
 - Forces between two particles is not equal and opposite
- We need to symmetrize this somehow

$$\frac{dv_i}{dt} = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla_i W_{ij}$$

• [check symmetry - also note angular momentum]

cs533d-term1-2005 26

SPH advection

- Simple approach: just move each particle according to its velocity
- More sophisticated: use some kind of SPH estimate of v
 - keep nearby particles moving together
- ♦ XSPH

$$\frac{dx_i}{dt} = v_i + \sum_j \frac{m_j (v_j - v_i)}{\frac{1}{2} (\rho_i + \rho_j)} W_{ij}$$

Equation of state

- Some debate maybe need a somewhat different equation of state if free-surface involved
- ◆ E.g. [Monaghan'94]

$$p = B\left(\left(\frac{\rho}{\rho_0}\right)^7 - 1\right)$$

- For small variations, looks like gradient is the same [linearize]
 - But SPH doesn't estimate -1 exactly, so you do get different results...

The End

 But my lifetime guarantee: you can ask me questions anytime about numerical physics stuff...

cs533d-term1-2005 29