
1cs533d-term1-2005

Notes

2cs533d-term1-2005

Shallow water equations

! To recap, using eta for depth=h+H:

! We!re currently working on the advection
(material derivative) part

�

D!

Dt
= "!# $ u

Du

Dt
= "g#h

3cs533d-term1-2005

Advection

! Let!s discretize just the material derivative
(advection equation):

! For a Lagrangian scheme this is trivial: just
move the particle that stores q, don!t
change the value of q at all

�

qt + u ! "q = 0 or
Dq

Dt
= 0

�

q x(t), t() = q x
0
,0()

4cs533d-term1-2005

Exploiting Lagrangian view

! We want to stick an Eulerian grid for now,
but somehow exploit the fact that
• If we know q at some point x at time t, we just

follow a particle through the flow starting at x
to see where that value of q ends up

�

q x(t + !t),t + !t() = q x(t), t()

dx

dt
= u x(), x(t) = x

0

5cs533d-term1-2005

Looking backwards

! Problem with tracing particles - we want values at grid
nodes at the end of the step
• Particles could end up anywhere

! But… we can look backwards in time

! Same formulas as before - but new interpretation
• To get value of q at a grid point, follow a particle backwards

through flow to wherever it started

�

qijk = q x(t !"t),t !"t()

dx

dt
= u x(), x(t) = xijk

6cs533d-term1-2005

Semi-Lagrangian method

! Developed in weather prediction, going back to
the 50!s

! Also dubbed “stable fluids” in graphics
(reinvention by Stam #99)

! To find new value of q at a grid point, trace
particle backwards from grid point (with velocity
u) for -"t and interpolate from old values of q

! Two questions
• How do we trace?

• How do we interpolate?

7cs533d-term1-2005

Tracing

! The errors we make in tracing backwards
aren!t too big a deal
• We don!t compound them - stability isn!t an

issue

• How accurate we are in tracing doesn!t effect
shape of q much, just location
! Whether we get too much blurring, oscillations, or

a nice result is really up to interpolation

! Thus look at “Forward” Euler and RK2

8cs533d-term1-2005

Tracing: 1st order

! We!re at grid node (i,j,k) at position xijk

! Trace backwards through flow for -"t

• Note - using u value at grid point (what we know
already) like Forward Euler.

! Then can get new q value (with interpolation)�

xold = xijk !"t uijk

�

qijk
n+1

= q
n
xold()

= q
n
xijk !"tuijk()

9cs533d-term1-2005

Interpolation

! “First” order accurate: nearest neighbour
• Just pick q value at grid node closest to xold

• Doesn!t work for slow fluid (small time steps) --
nothing changes!

• When we divide by grid spacing to put in terms of
advection equation, drops to zero!th order accuracy

! “Second” order accurate: linear or bilinear (2D)
• Ends up first order in advection equation

• Still fast, easy to handle boundary conditions…

• How well does it work?

10cs533d-term1-2005

Linear interpolation

! Error in linear interpolation is proportional to

! Modified PDE ends up something like…

• We have numerical viscosity, things will smear out

• For reasonable time steps, k looks like 1/"t ~ 1/"x

! [Equivalent to 1st order upwind for CFL "t]

! In practice, too much smearing for inviscid fluids

�

!x
2 "

2
q

"x
2

�

Dq

Dt
= k !t()!x 2

"
2
q

"x
2

11cs533d-term1-2005

Nice properties of lerping

! Linear interpolation is completely stable
• Interpolated value of q must lie between the

old values of q on the grid

• Thus with each time step, max(q) cannot
increase, and min(q) cannot decrease

! Thus we end up with a fully stable
algorithm - take "t as big as you want
• Great for interactive applications

• Also simplifies whole issue of picking time
steps

12cs533d-term1-2005

Cubic interpolation

! To fix the problem of excessive smearing,
go to higher order

! E.g. use cubic splines
• Finding interpolating C2 cubic spline is a little

painful, an alternative is the

• C1 Catmull-Rom (cubic Hermite) spline
! [derive]

! Introduces overshoot problems
• Stability isn!t so easy to guarantee anymore

13cs533d-term1-2005

Min-mod limited Catmull-Rom

! See Fedkiw, Stam, Jensen #01

! Trick is to check if either slope at the endpoints
of the interval has the wrong sign
• If so, clamp the slope to zero

• Still use cubic Hermite formulas with more reliable
slopes

! This has same stability guarantee as linear
interpolation
• But in smoother parts of flow, higher order accurate

• Called “high resolution”

! Still has issues with boundary conditions…

14cs533d-term1-2005

Back to Shallow Water

! So we can now handle advection of both
water depth and each component of water
velocity

! Left with the divergence and gradient
terms

�

!"
!t

= #"
!u
!x

+
!w
!z

$

%
&

'

(
)

!u
!t

= #g
!h
!x

!w
!t

= #g
!h
!z

15cs533d-term1-2005

Staggered grid

! We like central differences - more
accurate, unbiased

! So natural to use a staggered grid for
velocity and height variables
• Called MAC grid after the Marker-and-Cell

method (Harlow and Welch #65) that
introduced it

! Heights at cell centres
! u-velocities at x-faces of cells
! w-velocities at z-faces of cells

16cs533d-term1-2005

Spatial Discretization

! So on the MAC grid:

�

!"ij

!t
= #"ij

u
i+ 1

2, j
u

i# 12, j

$x
+
w
i, j+ 1

2

w
i, j# 12

$z

%

&
'

(

)
*

!u
i+ 1

2, j

!t
= #g

hi+1, j # hi, j
$x

!w
i, j+ 1

2

!t
= #g

hi, j+1
hi, j

$z

17cs533d-term1-2005

Solving Full Equations

! Let!s now solve the full incompressible
Euler or Navier-Stokes equations

! We!ll first avoid interfaces
(e.g. free surfaces)

! Think smoke

18cs533d-term1-2005

Operator Splitting

! Generally a bad idea to treat
incompressible flow as conservation laws
with constraints

! Instead: split equations up into easy
chunks, just like Shallow Water

�

ut + u ! "u = 0

ut = #"2
u

ut = g

ut + 1

$
"p = 0 " ! u = 0()

19cs533d-term1-2005

Time integration

! Don!t mix the steps at all - 1st order accurate

! We!ve already seen how to do the advection step

! Often can ignore the second step (viscosity)

! Let!s focus for now on the last step (pressure)
�

u
(1)

= advect(u
n
,!t)

u
(2)

= u
(1)

+ "!t#2
u
(2)

u
(3)

= u
(2)

+ !tg

u
n+1

= u
(3) $!t 1

%
#p

20cs533d-term1-2005

Advection boundary conditions

! But first, one last issue

! Semi-Lagrangian procedure may need to
interpolate from values of u outside the domain,
or inside solids
• Outside: no correct answer. Extrapolating from

nearest point on domain is fine, or assuming some
far-field velocity perhaps

• Solid walls: velocity should be velocity of wall
(e.g.zero)
! Technically only normal component of velocity needs to be

taken from wall, in absence of viscosity the tangential
component may be better extrapolated from the fluid

21cs533d-term1-2005

Continuous pressure

! Before we discretize in space, last step is
to take u(3), figure out the pressure p that
makes un+1 incompressible:
• Want

• Plug in pressure update formula:

• Rearrange:

• Solve this Poisson problem (often density is
constant and you can rescale p by it, also "t)
! Make this assumption from now on:

�

! " u
n+1

= 0

�

! " u(3) #$t 1
%
!p() = 0

�

! " #t 1
$
!p() = ! " u(3)

�

!
2
p = ! " u

(3)

u
n+1

= u
(3)
#!p

22cs533d-term1-2005

Pressure boundary conditions

! Issue of what to do for p and u at
boundaries in pressure solve

! Think in terms of control volumes:
subtract pn from u on boundary so that
integral of u•n is zero

! So at closed boundary we end up with

�

u
n+1

! n = 0

u
n+1

! n = u
(3)
! n "

#p

#n

23cs533d-term1-2005

Pressure BC’s cont’d.

! At closed wall boundary have two choices:
• Set u•n=0 first, then solve for p with $p/$n=0,

don!t update velocity at boundary

• Or simply solve for p with $p/$n=u•n and
update u•n at boundary with -$p/$n

• Equivalent, but the second option make sense
in the continuous setting, and generally keeps
you more honest

! At open (or free-surface) boundaries, no
constraint on u•n, so typically pick p=0

24cs533d-term1-2005

Approximate projection

! Can now directly discretize Poisson equation on
a grid

! Central differences - 2nd order, no bias

�

!2
p()

ijk
=

" 2p
"x 2

+
" 2p
"y 2

+
" 2p
"z2

$
%

&

'
(

)
pi+1 jk * 2pijk + pi*1 jk

+x 2
+
pij+1k * 2pijk + pij*1k

+y 2
+
pijk+1 * 2pijk + pijk*1

+z2

! , u()
ijk

=
"u
"x

+
"v
"y

+
"w
"z

$
%

&

'
(
ijk

)
ui+1 jk * ui*1 jk

2+x
+
vij+1k * vij*1k

2+y
+
wijk+1 * wijk*1

2+z

!p()
ijk
)

pi+1 jk * pi*1 jk
2+x

,
pij+1k * pij*1k

2+y
,
pijk+1 * pijk*1
2+z

-

.
/

0

1
2

25cs533d-term1-2005

Issues

! On the plus side: simple grid, simple discretization,
becomes exact in limit for smooth u…

! But it doesn!t work
• Divergence part of equation can!t “see” high frequency

compression waves
• Left with high frequency oscillatory error
• Need to filter this out - smooth out velocity field before

subtracting off pressure gradient
• Filtering introduces more numerical viscosity, eliminates features

on coarse grids

! Also: doesn!t exactly make u incompressible
• Measuring divergence of result gives nonzero

! So let!s look at exactly enforcing the incompressibility
constraint

26cs533d-term1-2005

Exact projection (1st try)

! Connection
• use the discrete divergence as a hard

constraint to enforce, pressure p turns out to
be the Lagrange multipliers…

! Or let!s just follow the route before, but
discretize divergence and gradient first
• First try: use centred differences as before

• u and p all “live” on same grid: uijk, pijk

• This is called a “collocated” scheme

27cs533d-term1-2005

Exact collocated projection

! So want

! Update with discrete gradient of p

! Plug in update formula to solve for p

�

! " u
n+1()

ijk
= 0

ui+1 jk

n+1
ui#1 jk

n+1

2$x
+
vij+1k

n+1
vij#1k

n+1

2$y
+
wijk+1

n+1
wijk#1

n+1

2$z
= 0

�

u
n+1

= u
(3)
!"p

�

uijk
n+1

= uijk
(3) !

pi+1 jk ! pi!1 jk
2"x

,
pij+1k ! pij!1k

2"y
,
pijk+1

! pijk!1
2"z

$
%

&

'
(

�

pi+2 jk ! 2pijk + pi!2 jk

4"x
2

+
pij+2k ! 2pijk + pij!2k

4"y
2

+
pijk+2

! 2pijk + pijk!2

4"z
2

=

ui+1 jk

(3)
! ui!1 jk

(3)

2"x
+
vij+1k

(3)
! vij!1k

(3)

2"y
+
wijk+1

(3)
! wijk!1

(3)

2"z

28cs533d-term1-2005

Problems

! Pressure problem decouples into 8 independent
subproblems

! “Checkerboard” instability
• Divergence still doesn!t see high-frequency

compression waves

! Really want to avoid differences over 2 grid
points, but still want centred

! Thus use a staggered MAC grid, as with shallow
water

29cs533d-term1-2005

Staggered grid

! Pressure p lives in centre of cell, pijk

! u lives in centre of x-faces, ui+1/2,j,k

! v in centre of y-faces, vi,j+1/2,k

! w in centre of z-faces, wi,j,k+1/2

! Whenever we need to take a difference
(grad p or div u) result is where it should be

! Works beautifully with “stair-step” boundaries
• Not so simple to generalize to other boundary

geometry

30cs533d-term1-2005

Exact staggered projection

! Do it discretely as before, but now want

! And update is
�

! " u
n+1()

ijk
= 0

ui+1/ 2 jk

n+1
ui#1/ 2 jk

n+1

$x
+
vij+1/ 2k

n+1
vij#1/ 2k

n+1

$y
+
wijk+1/ 2

n+1
wijk#1/ 2

n+1

$z
= 0

�

ui+1/ 2 jk

n+1
= ui+1/ 2 jk

(3)
!
pi+1 jk ! pijk

"x

vij+1/ 2k

n+1
= vij+1/ 2k

(3)
!
pij+1k ! pijk

"y

wijk+1/ 2

n+1
= wijk+1/ 2

(3)
!
pijk+1

! pijk

"z

31cs533d-term1-2005

(Continued)

! Plugging in to solve for p

! This is for all i,j,k: gives a linear system to
solve -Ap=d

�

pi+1 jk ! 2pijk + pi!1 jk

"x
2

+
pij+1k ! 2pijk + pij!1k

"y
2

+
pijk+1

! 2pijk + pijk!1

"z
2

=

ui+1/ 2 jk

(3)
! ui!1/ 2 jk

(3)

"x
+
vij+1/ 2k

(3)
! vij!1/ 2k

(3)

"y
+
wijk+1/ 2

(3)
! wijk!1/ 2

(3)

"z

32cs533d-term1-2005

Pressure solve simplified

! Assume for simplicity that "x="y="z=h

! Then we can actually rescale pressure (again - already
took in density and "t) to get

! At boundaries where p is known, replace (say) pi+1jk with
known value, move to right-hand side (be careful to
scale if not zero!)

! At boundaries where (say) $p/$y=v, replace pij+1k with
pijk+v (so finite difference for $p/$y is correct at boundary)

�

6pijk ! pi+1 jk ! pi!1 jk ! pij+1k ! pij!1k ! pijk+1 ! pijk!1 =

!ui+1/ 2 jk

(3)
+ ui!1/ 2 jk

(3)
! vij+1/ 2k

(3)
+ vij!1/ 2k

(3)
! wijk+1/ 2

(3)
+ wijk!1/ 2

(3)

33cs533d-term1-2005

Solving the Linear System

! So we!re left with the problem of efficiently
finding p

! Luckily, linear system Ap=-d is symmetric
positive definite

! Incredibly well-studied A, lots of work out
there on how to do it fast

34cs533d-term1-2005

How to solve it

! Direct Gaussian Elimination does not work well
• This is a large sparse matrix - will end up with lots of fill-in (new

nonzeros)

! If domain is square with uniform boundary conditions,
can use FFT
• Fourier modes are eigenvectors of the matrix A, everything

works out

! But in general, will need to go to iterative methods
• Luckily - have a great starting guess! Pressure from previous

time step [appropriately rescaled]

35cs533d-term1-2005

Convergence

! Need to know when to stop iterating

! Ideally - when error is small

! But if we knew the error, we!d know the solution

! We can measure the residual for Ap=b: it!s just r=b-Ap
• Related to the error: Ae=r

! So check if norm(r)<tol*norm(b)
• Play around with tol (maybe 1e-4 is good enough?)

! For smoke, may even be enough to just take a fixed
number of iterations

36cs533d-term1-2005

Conjugate Gradient

! Standard iterative method for solving
symmetric positive definite systems

! For a fairly exhaustive description, read
• “An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain”, by J. R.
Shewchuk

! Basic idea: steepest descent

37cs533d-term1-2005

Plain vanilla CG

! r=b-Ap (p is initial guess)

! "=rTr, check if already solved

! s=r (first search direction)

! Loop:
• t=As

• #= "/(sTt) (optimum step size)

• x+= #s, r-= #t, check for convergence

• "new=rTr

• $= "new /"

• s=r+ $s (updated search direction)

• "="new

