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Notes
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Shallow water equations

! To recap, using eta for depth=h+H:

! We!re currently working on the advection
(material derivative) part
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Advection

! Let!s discretize just the material derivative
(advection equation):

! For a Lagrangian scheme this is trivial: just
move the particle that stores q, don!t
change the value of q at all
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qt + u ! "q = 0 or
Dq

Dt
= 0
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q x(t), t( ) = q x
0
,0( )
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Exploiting Lagrangian view

! We want to stick an Eulerian grid for now,
but somehow exploit the fact that
• If we know q at some point x at time t, we just

follow a particle through the flow starting at x
to see where that value of q ends up

� 

q x(t + !t),t + !t( ) = q x(t), t( )

dx

dt
= u x( ), x(t) = x

0
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Looking backwards

! Problem with tracing particles - we want values at grid
nodes at the end of the step
• Particles could end up anywhere

! But… we can look backwards in time

! Same formulas as before - but new interpretation
• To get value of q at a grid point, follow a particle backwards

through flow to wherever it started

� 

qijk = q x(t !"t),t !"t( )

dx

dt
= u x( ), x(t) = xijk
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Semi-Lagrangian method

! Developed in weather prediction, going back to
the 50!s

! Also dubbed “stable fluids” in graphics
(reinvention by Stam #99)

! To find new value of q at a grid point, trace
particle backwards from grid point (with velocity
u) for -"t and interpolate from old values of q

! Two questions
• How do we trace?

• How do we interpolate?
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Tracing

! The errors we make in tracing backwards
aren!t too big a deal
• We don!t compound them - stability isn!t an

issue

• How accurate we are in tracing doesn!t effect
shape of q much, just location
! Whether we get too much blurring, oscillations, or

a nice result is really up to interpolation

! Thus look at “Forward” Euler and RK2
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Tracing: 1st order

! We!re at grid node (i,j,k) at position xijk

! Trace backwards through flow for -"t

• Note - using u value at grid point (what we know
already) like Forward Euler.

! Then can get new q value (with interpolation)� 

xold = xijk !"t uijk

� 

qijk
n+1

= q
n
xold( )

= q
n
xijk !"tuijk( )
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Interpolation

! “First” order accurate: nearest neighbour
• Just pick q value at grid node closest to xold

• Doesn!t work for slow fluid (small time steps) --
nothing changes!

• When we divide by grid spacing to put in terms of
advection equation, drops to zero!th order accuracy

! “Second” order accurate: linear or bilinear (2D)
• Ends up first order in advection equation

• Still fast, easy to handle boundary conditions…

• How well does it work?
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Linear interpolation

! Error in linear interpolation is proportional to

! Modified PDE ends up something like…

• We have numerical viscosity, things will smear out

• For reasonable time steps, k looks like 1/"t ~ 1/"x

! [Equivalent to 1st order upwind for CFL "t]

! In practice, too much smearing for inviscid fluids
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Nice properties of lerping

! Linear interpolation is completely stable
• Interpolated value of q must lie between the

old values of q on the grid

• Thus with each time step, max(q) cannot
increase, and min(q) cannot decrease

! Thus we end up with a fully stable
algorithm - take "t as big as you want
• Great for interactive applications

• Also simplifies whole issue of picking time
steps
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Cubic interpolation

! To fix the problem of excessive smearing,
go to higher order

! E.g. use cubic splines
• Finding interpolating C2 cubic spline is a little

painful, an alternative is the

• C1 Catmull-Rom (cubic Hermite) spline
! [derive]

! Introduces overshoot problems
• Stability isn!t so easy to guarantee anymore
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Min-mod limited Catmull-Rom

! See Fedkiw, Stam, Jensen #01

! Trick is to check if either slope at the endpoints
of the interval has the wrong sign
• If so, clamp the slope to zero

• Still use cubic Hermite formulas with more reliable
slopes

! This has same stability guarantee as linear
interpolation
• But in smoother parts of flow, higher order accurate

• Called “high resolution”

! Still has issues with boundary conditions…
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Back to Shallow Water

! So we can now handle advection of both
water depth and each component of water
velocity

! Left with the divergence and gradient
terms
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Staggered grid

! We like central differences - more
accurate, unbiased

! So natural to use a staggered grid for
velocity and height variables
• Called MAC grid after the Marker-and-Cell

method (Harlow and Welch #65) that
introduced it

! Heights at cell centres
! u-velocities at x-faces of cells
! w-velocities at z-faces of cells
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Spatial Discretization

! So on the MAC grid:
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Solving Full Equations

! Let!s now solve the full incompressible
Euler or Navier-Stokes equations

! We!ll first avoid interfaces
(e.g. free surfaces)

! Think smoke
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Operator Splitting

! Generally a bad idea to treat
incompressible flow as conservation laws
with constraints

! Instead: split equations up into easy
chunks, just like Shallow Water

� 

ut + u ! "u = 0

ut = #"2
u

ut = g

ut + 1

$
"p = 0 " ! u = 0( )

19cs533d-term1-2005

Time integration

! Don!t mix the steps at all - 1st order accurate

! We!ve already seen how to do the advection step

! Often can ignore the second step (viscosity)

! Let!s focus for now on the last step (pressure)
� 

u
(1)

= advect(u
n
,!t)

u
(2)

= u
(1)

+ "!t#2
u
(2)

u
(3)
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+ !tg
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%
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Advection boundary conditions

! But first, one last issue

! Semi-Lagrangian procedure may need to
interpolate from values of u outside the domain,
or inside solids
• Outside: no correct answer. Extrapolating from

nearest point on domain is fine, or assuming some
far-field velocity perhaps

• Solid walls: velocity should be velocity of wall
(e.g.zero)
! Technically only normal component of velocity needs to be

taken from wall, in absence of viscosity the tangential
component may be better extrapolated from the fluid
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Continuous pressure

! Before we discretize in space, last step is
to take u(3), figure out the pressure p that
makes un+1 incompressible:
• Want

• Plug in pressure update formula:

• Rearrange:

• Solve this Poisson problem (often density is
constant and you can rescale p by it, also "t)
! Make this assumption from now on:
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= 0
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%
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Pressure boundary conditions

! Issue of what to do for p and u at
boundaries in pressure solve

! Think in terms of control volumes:
subtract pn from u on boundary so that
integral of u•n is zero

! So at closed boundary we end up with

� 

u
n+1

! n = 0

u
n+1

! n = u
(3)
! n "

#p

#n
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Pressure BC’s cont’d.

! At closed wall boundary have two choices:
• Set u•n=0 first, then solve for p with $p/$n=0,

don!t update velocity at boundary

• Or simply solve for p with $p/$n=u•n and
update u•n at boundary with -$p/$n

• Equivalent, but the second option make sense
in the continuous setting, and generally keeps
you more honest

! At open (or free-surface) boundaries, no
constraint on u•n, so typically pick p=0
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Approximate projection

! Can now directly discretize Poisson equation on
a grid

! Central differences - 2nd order, no bias
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Issues

! On the plus side: simple grid, simple discretization,
becomes exact in limit for smooth u…

! But it doesn!t work
• Divergence part of equation can!t “see” high frequency

compression waves
• Left with high frequency oscillatory error
• Need to filter this out - smooth out velocity field before

subtracting off pressure gradient
• Filtering introduces more numerical viscosity, eliminates features

on coarse grids

! Also: doesn!t exactly make u incompressible
• Measuring divergence of result gives nonzero

! So let!s look at exactly enforcing the incompressibility
constraint
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Exact projection (1st try)

! Connection
• use the discrete divergence as a hard

constraint to enforce, pressure p turns out to
be the Lagrange multipliers…

! Or let!s just follow the route before, but
discretize divergence and gradient first
• First try: use centred differences as before

• u and p all “live” on same grid: uijk, pijk

• This is called a “collocated” scheme
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Exact collocated projection

! So want

! Update with discrete gradient of p

! Plug in update formula to solve for p
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Problems

! Pressure problem decouples into 8 independent
subproblems

! “Checkerboard” instability
• Divergence still doesn!t see high-frequency

compression waves

! Really want to avoid differences over 2 grid
points, but still want centred

! Thus use a staggered MAC grid, as with shallow
water
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Staggered grid

! Pressure p lives in centre of cell, pijk

! u lives in centre of x-faces, ui+1/2,j,k

! v in centre of y-faces, vi,j+1/2,k

! w in centre of z-faces, wi,j,k+1/2

! Whenever we need to take a difference
(grad p or div u) result is where it should be

! Works beautifully with “stair-step” boundaries
• Not so simple to generalize to other boundary

geometry
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Exact staggered projection

! Do it discretely as before, but now want

! And update is
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(Continued)

! Plugging in to solve for p

! This is for all i,j,k: gives a linear system to
solve -Ap=d
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Pressure solve simplified

! Assume for simplicity that "x="y="z=h

! Then we can actually rescale pressure (again - already
took in density and "t) to get

! At boundaries where p is known, replace (say) pi+1jk with
known value, move to right-hand side (be careful to
scale if not zero!)

! At boundaries where (say) $p/$y=v, replace pij+1k with
pijk+v (so finite difference for $p/$y is correct at boundary)
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Solving the Linear System

! So we!re left with the problem of efficiently
finding p

! Luckily, linear system Ap=-d is symmetric
positive definite

! Incredibly well-studied A, lots of work out
there on how to do it fast
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How to solve it

! Direct Gaussian Elimination does not work well
• This is a large sparse matrix - will end up with lots of fill-in (new

nonzeros)

! If domain is square with uniform boundary conditions,
can use FFT
• Fourier modes are eigenvectors of the matrix A, everything

works out

! But in general, will need to go to iterative methods
• Luckily - have a great starting guess! Pressure from previous

time step [appropriately rescaled]
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Convergence

! Need to know when to stop iterating

! Ideally - when error is small

! But if we knew the error, we!d know the solution

! We can measure the residual for Ap=b: it!s just r=b-Ap
• Related to the error: Ae=r

! So check if norm(r)<tol*norm(b)
• Play around with tol (maybe 1e-4 is good enough?)

! For smoke, may even be enough to just take a fixed
number of iterations
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Conjugate Gradient

! Standard iterative method for solving
symmetric positive definite systems

! For a fairly exhaustive description, read
• “An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain”, by J. R.
Shewchuk

! Basic idea: steepest descent
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Plain vanilla CG

! r=b-Ap     (p is initial guess)

! "=rTr,    check if already solved

! s=r      (first search direction)

! Loop:
• t=As

• #= "/(sTt)            (optimum step size)

• x+= #s,    r-= #t,    check for convergence

• "new=rTr

• $= "new /"

• s=r+ $s         (updated search direction)

• "="new


