Notes

Shallow water equations

- To recap, using eta for depth=h+H:

$$
\begin{aligned}
& \frac{D \eta}{D t}=-\eta \nabla \cdot u \\
& \frac{D u}{D t}=-g \nabla h
\end{aligned}
$$

- We're currently working on the advection (material derivative) part

Advection

- Let's discretize just the material derivative (advection equation):

$$
q_{t}+u \cdot \nabla q=0 \quad \text { or } \quad \frac{D q}{D t}=0
$$

- For a Lagrangian scheme this is trivial: just move the particle that stores q , don't change the value of q at all

$$
q(x(t), t)=q\left(x_{0}, 0\right)
$$

Exploiting Lagrangian view

- We want to stick an Eulerian grid for now, but somehow exploit the fact that
- If we know q at some point x at time t, we just follow a particle through the flow starting at x to see where that value of q ends up

$$
\begin{aligned}
& q(x(t+\Delta t), t+\Delta t)=q(x(t), t) \\
& \frac{d x}{d t}=u(x), \quad x(t)=x_{0}
\end{aligned}
$$

Looking backwards

- Problem with tracing particles - we want values at grid nodes at the end of the step
- Particles could end up anywhere
- But... we can look backwards in time

$$
\begin{aligned}
& q_{i j k}=q(x(t-\Delta t), t-\Delta t) \\
& \frac{d x}{d t}=u(x), \quad x(t)=x_{i j k}
\end{aligned}
$$

- Same formulas as before - but new interpretation
- To get value of q at a grid point, follow a particle backwards through flow to wherever it started

Semi-Lagrangian method

- Developed in weather prediction, going back to the 50's
- Also dubbed "stable fluids" in graphics (reinvention by Stam '99)
- To find new value of q at a grid point, trace particle backwards from grid point (with velocity u) for $-\Delta t$ and interpolate from old values of q
- Two questions
- How do we trace?
- How do we interpolate?

Tracing

- The errors we make in tracing backwards aren't too big a deal
- We don't compound them - stability isn't an issue
- How accurate we are in tracing doesn't effect shape of q much, just location
- Whether we get too much blurring, oscillations, or a nice result is really up to interpolation
- Thus look at "Forward" Euler and RK2

Tracing: 1st order

- We're at grid node (i,j,k) at position $\mathrm{x}_{\mathrm{ijk}}$
- Trace backwards through flow for $-\Delta \mathrm{t}$

$$
x_{o l d}=x_{i j k}-\Delta t u_{i j k}
$$

- Note - using u value at grid point (what we know already) like Forward Euler.
- Then can get new q value (with interpolation)

$$
\begin{aligned}
q_{i j k}^{n+1} & =q^{n}\left(x_{o l d}\right) \\
& =q^{n}\left(x_{i j k}-\Delta t u_{i j k}\right)
\end{aligned}
$$

Interpolation

- "First" order accurate: nearest neighbour
- Just pick q value at grid node closest to $\mathrm{x}_{\text {old }}$
- Doesn't work for slow fluid (small time steps) -nothing changes!
- When we divide by grid spacing to put in terms of advection equation, drops to zero'th order accuracy
- "Second" order accurate: linear or bilinear (2D)
- Ends up first order in advection equation
- Still fast, easy to handle boundary conditions...
- How well does it work?

Nice properties of lerping

- Linear interpolation is completely stable
- Interpolated value of q must lie between the old values of q on the grid
- Thus with each time step, max(q) cannot increase, and $\min (q)$ cannot decrease
- Thus we end up with a fully stable algorithm - take Δt as big as you want
- Great for interactive applications
- Also simplifies whole issue of picking time steps

Linear interpolation

- Error in linear interpolation is proportional to

$$
\Delta x^{2} \frac{\partial^{2} q}{\partial x^{2}}
$$

- Modified PDE ends up something like...

$$
\frac{D q}{D t}=k(\Delta t) \Delta x^{2} \frac{\partial^{2} q}{\partial x^{2}}
$$

- We have numerical viscosity, things will smear out
- For reasonable time steps, k looks like $1 / \Delta t \sim 1 / \Delta x$
- [Equivalent to 1st order upwind for CFL Δt]
- In practice, too much smearing for inviscid fluids

Cubic interpolation

- To fix the problem of excessive smearing, go to higher order
- E.g. use cubic splines
- Finding interpolating C^{2} cubic spline is a little painful, an alternative is the
- ${ }^{1}$ Catmull-Rom (cubic Hermite) spline
- [derive]
- Introduces overshoot problems
- Stability isn't so easy to guarantee anymore

Min-mod limited Catmull-Rom

- See Fedkiw, Stam, Jensen ‘01
- Trick is to check if either slope at the endpoints of the interval has the wrong sign
- If so, clamp the slope to zero
- Still use cubic Hermite formulas with more reliable slopes
- This has same stability guarantee as linear interpolation
- But in smoother parts of flow, higher order accurate
- Called "high resolution"
- Still has issues with boundary conditions...

Staggered grid

- We like central differences - more accurate, unbiased
- So natural to use a staggered grid for velocity and height variables
- Called MAC grid after the Marker-and-Cell method (Harlow and Welch '65) that introduced it
- Heights at cell centres
- u-velocities at x-faces of cells
- w-velocities at z-faces of cells

Back to Shallow Water

- So we can now handle advection of both water depth and each component of water velocity
- Left with the divergence and gradient terms

$$
\begin{aligned}
& \frac{\partial \eta}{\partial t}=-\eta\left(\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}\right) \\
& \frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x} \\
& \frac{\partial w}{\partial t}=-g \frac{\partial h}{\partial z}
\end{aligned}
$$

Spatial Discretization

- So on the MAC grid:

$$
\begin{aligned}
& \frac{\partial \eta_{i j}}{\partial t}=-\eta_{i j}\left(\frac{u_{i+1 / 2, j}-u_{i-1 / 2, j}}{\Delta x}+\frac{w_{i, j+1 / 2}-w_{i, j-1 / 2}}{\Delta z}\right) \\
& \frac{\partial u_{i+1 / 2, j}}{\partial t}=-g \frac{h_{i+1, j}-h_{i, j}}{\Delta x} \\
& \frac{\partial w_{i, j+1 / 2}}{\partial t}=-g \frac{h_{i, j+1}-h_{i, j}}{\Delta z}
\end{aligned}
$$

Solving Full Equations

- Let's now solve the full incompressible Euler or Navier-Stokes equations
- We'll first avoid interfaces (e.g. free surfaces)
- Think smoke

Operator Splitting

- Generally a bad idea to treat incompressible flow as conservation laws with constraints
- Instead: split equations up into easy chunks, just like Shallow Water

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =0 \\
u_{t} & =v \nabla^{2} u \\
u_{t} & =g \\
u_{t}+\frac{1}{\rho} \nabla p & =0 \quad(\nabla \cdot u=0)
\end{aligned}
$$

Advection boundary conditions

- But first, one last issue
- Semi-Lagrangian procedure may need to interpolate from values of u outside the domain, or inside solids
- Outside: no correct answer. Extrapolating from nearest point on domain is fine, or assuming some far-field velocity perhaps
- Solid walls: velocity should be velocity of wall (e.g.zero)
- Technically only normal component of velocity needs to be taken from wall, in absence of viscosity the tangential component may be better extrapolated from the fluid

Continuous pressure

- Before we discretize in space, last step is to take $u^{(3)}$, figure out the pressure p that makes $\mathrm{u}^{\mathrm{n}+1}$ incompressible:
- Want $\nabla \cdot u^{n+1}=0$
- Plug in pressure update formula: $\nabla \cdot\left(u^{(3)}-\Delta t \frac{1}{\rho} \nabla p\right)=0$
- Rearrange: $\nabla \cdot\left(\Delta t \frac{1}{\rho} \nabla p\right)=\nabla \cdot u^{(3)}$
- Solve this Poisson problem (often density is constant and you can rescale p by it, also Δt)
- Make this assumption from now on:

$$
\begin{aligned}
& \nabla^{2} p=\nabla \cdot u^{(3)} \\
& u^{n+1}=u^{(3)}-\nabla p
\end{aligned}
$$

Pressure boundary conditions

- Issue of what to do for p and u at boundaries in pressure solve
- Think in terms of control volumes: subtract pn from u on boundary so that integral of $u \cdot n$ is zero
- So at closed boundary we end up with

$$
\begin{aligned}
& u^{n+1} \cdot n=0 \\
& u^{n+1} \cdot n=u^{(3)} \cdot n-\frac{\partial p}{\partial n}
\end{aligned}
$$

Pressure BC's cont'd.

- At closed wall boundary have two choices:
- Set $u \cdot n=0$ first, then solve for p with $\partial p / \partial n=0$, don't update velocity at boundary
- Or simply solve for p with $\partial p / \partial n=u \cdot n$ and update $u \cdot n$ at boundary with $-\partial p / \partial n$
- Equivalent, but the second option make sense in the continuous setting, and generally keeps you more honest
- At open (or free-surface) boundaries, no constraint on $u \cdot n$, so typically pick $p=0$

Approximate projection

- Can now directly discretize Poisson equation on a grid

$$
\begin{aligned}
\left(\nabla^{2} p\right)_{i j k} & =\left(\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}+\frac{\partial^{2} p}{\partial z^{2}}\right) \\
& \approx \frac{p_{i+1 j k}-2 p_{i j k}+p_{i-1 j k}}{\Delta x^{2}}+\frac{p_{i j+1 k}-2 p_{i j k}+p_{i j-1 k}}{\Delta y^{2}}+\frac{p_{i j k+1}-2 p_{i j k}+p_{i j k-1}}{\Delta z^{2}} \\
(\nabla \cdot u)_{i j k} & =\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)_{i j k} \\
& \approx \frac{u_{i+1 j k}-u_{i-1 j k}}{2 \Delta x}+\frac{v_{i j+1 k}-v_{i j-1 k}}{2 \Delta y}+\frac{w_{i j k+1}-w_{i j k-1}}{2 \Delta z} \\
(\nabla p)_{i j k} & \approx\left[\frac{p_{i+1 j k}-p_{i-1 j k}}{2 \Delta x}, \frac{p_{i j+1 k}-p_{i j-1 k}}{2 \Delta y}, \frac{p_{i j k+1}-p_{i j k-1}}{2 \Delta z}\right]
\end{aligned}
$$

- Central differences - 2nd order, no bias

Issues

- On the plus side: simple grid, simple discretization, becomes exact in limit for smooth u...
- But it doesn't work
- Divergence part of equation can't "see" high frequency compression waves
- Left with high frequency oscillatory error
- Need to filter this out - smooth out velocity field before subtracting off pressure gradient
- Filtering introduces more numerical viscosity, eliminates features on coarse grids
- Also: doesn't exactly make u incompressible
- Measuring divergence of result gives nonzero
-So let's look at exactly enforcing the incompressibility constraint

Exact collocated projection

- So want $\left(\nabla \cdot u^{n+1}\right)_{i j k}=0$

$$
\frac{u_{i+1 j k}^{n+1}-u_{i-1 j k}^{n+1}}{2 \Delta x}+\frac{v_{i j+k}^{n+1}-v_{i j-1 k}^{n+1}}{2 \Delta y}+\frac{w_{i j+1}^{n+1}-w_{i j k-1}^{n+1}}{2 \Delta z}=0
$$

- Update with discrete gradient of $\mathrm{p} u^{n+1}=u^{(3)}-\nabla p$

$$
u_{i j k}^{n+1}=u_{i j k}^{(3)}-\left\lfloor\frac{p_{i+1 j k}-p_{i-1 j k}}{2 \Delta x}, \frac{p_{i j+1 k}-p_{i j-1 k}}{2 \Delta y}, \frac{p_{i j k+1}-p_{i j k-1}}{2 \Delta z}\right\rfloor
$$

- Plug in update formula to solve for p
$\frac{p_{i+2 j k}-2 p_{i k}+p_{i-2 j k}}{4 \Delta x^{2}}+\frac{p_{i j+2 k}-2 p_{i j k}+p_{i j-2 k}}{4 \Delta y^{2}}+\frac{p_{i j+2}-2 p_{i j k}+p_{i j k-2}}{4 \Delta z^{2}}=$

$$
\frac{u_{i+1 j k}^{(3)}-u_{i-1 j k}^{(3)}}{2 \Delta x}+\frac{v_{i j+1 k}^{(3)}-v_{i j-1 k}^{(3)}}{2 \Delta y}+\frac{w_{i j k+1}^{(3)}-w_{i j k-1}^{(3)}}{2 \Delta z}
$$

Exact projection (1st try)

- Connection
- use the discrete divergence as a hard constraint to enforce, pressure p turns out to be the Lagrange multipliers...
- Or let's just follow the route before, but discretize divergence and gradient first
- First try: use centred differences as before
- u and p all "live" on same grid: $u_{i j k}, p_{i j k}$
- This is called a "collocated" scheme

Problems

- Pressure problem decouples into 8 independent subproblems
- "Checkerboard" instability
- Divergence still doesn't see high-frequency compression waves
- Really want to avoid differences over 2 grid points, but still want centred
- Thus use a staggered MAC grid, as with shallow water

Staggered grid

- Pressure p lives in centre of cell, $\mathrm{p}_{\mathrm{ijk}}$
- u lives in centre of x-faces, $\mathrm{u}_{\mathrm{i}+1 / 2, \mathrm{j}, \mathrm{k}}$
- v in centre of y-faces, $v_{i, j+1 / 2, k}$
- w in centre of z-faces, $\mathrm{w}_{\mathrm{i}, \mathrm{j}, \mathrm{k}+1 / 2}$
- Whenever we need to take a difference (grad por div u) result is where it should be
- Works beautifully with "stair-step" boundaries
- Not so simple to generalize to other boundary geometry

Exact staggered projection

- Do it discretely as before, but now want
$\left(\nabla \cdot u^{n+1}\right)_{i j k}=0$

$$
\frac{u_{i+1 / 2 j k}^{n+1}-u_{i-1 / 2 j k}^{n+1}}{\Delta x}+\frac{v_{i j+1 / 2 k}^{n+1}-v_{i j-1 / 2 k}^{n+1}}{\Delta y}+\frac{w_{i j k+1 / 2}^{n+1}-w_{i j k-1 / 2}^{n+1}}{\Delta z}=0
$$

- And update is

$$
\begin{aligned}
& u_{i+1 / 2 j k}^{n+1}=u_{i+1 / 2 j k}^{(3)}-\frac{p_{i+1 j k}-p_{i j k}}{\Delta x} \\
& v_{i j+1 / 2 k}^{n+1}=v_{i j+1 / 2 k}^{(3)}-\frac{p_{i j+1 k}-p_{i j k}}{\Delta y} \\
& w_{i j k+1 / 2}^{n+1}=w_{i j k+1 / 2}^{(3)}-\frac{p_{i j k+1}-p_{i j k}}{\Delta z}
\end{aligned}
$$

(Continued)

- Plugging in to solve for p
$\frac{p_{i+1 j k}-2 p_{i j k}+p_{i-1 j k}}{\Delta x^{2}}+\frac{p_{i j+1 k}-2 p_{i j k}+p_{i j-1 k}}{\Delta y^{2}}+\frac{p_{i j k+1}-2 p_{i j k}+p_{i j k-1}}{\Delta z^{2}}=$

$$
\frac{u_{i+1 / 2 j k}^{(3)}-u_{i-1 / 2 j k}^{(3)}}{\Delta x}+\frac{v_{i j+1 / 2 k}^{(3)}-v_{i j-1 / 2 k}^{(3)}}{\Delta y}+\frac{w_{i j k+1 / 2}^{(3)}-w_{i j k-1 / 2}^{(3)}}{\Delta z}
$$

- This is for all i,j,k: gives a linear system to solve $-A p=d$

Pressure solve simplified

- Assume for simplicity that $\Delta x=\Delta y=\Delta z=h$
- Then we can actually rescale pressure (again - already took in density and Δt) to get

$$
\begin{aligned}
& 6 p_{i j k}-p_{i+1 j k}-p_{i-1 j k}-p_{i j+1 k}-p_{i j-1 k}-p_{i j k+1}-p_{i j k-1}= \\
& \quad-u_{i+1 / 2 j k}^{(3)}+u_{i-1 / 2 j k}^{(3)}-v_{i j+1 / 2 k}^{(3)}+v_{i j-1 / 2 k}^{(3)}-w_{i j k+1 / 2}^{(3)}+w_{i j k-1 / 2}^{(3)}
\end{aligned}
$$

- At boundaries where p is known, replace (say) $p_{i+1 j k}$ with known value, move to right-hand side (be careful to scale if not zero!)
- At boundaries where (say) $\partial p / \partial y=v$, replace $p_{i j+1 k}$ with $\mathrm{p}_{\mathrm{ijk}}+\mathrm{v}$ (so finite difference for $\partial \mathrm{p} / \partial \mathrm{y}$ is correct at boundary)

Solving the Linear System

- So we're left with the problem of efficiently finding p
- Luckily, linear system Ap=-d is symmetric positive definite
- Incredibly well-studied A, lots of work out there on how to do it fast

How to solve it

- Direct Gaussian Elimination does not work well
- This is a large sparse matrix - will end up with lots of fill-in (new nonzeros)
- If domain is square with uniform boundary conditions, can use FFT
- Fourier modes are eigenvectors of the matrix A, everything works out
- But in general, will need to go to iterative methods
- Luckily - have a great starting guess! Pressure from previous time step [appropriately rescaled]

Convergence

- Need to know when to stop iterating
- Ideally - when error is small
- But if we knew the error, we'd know the solution
- We can measure the residual for $A p=b$: it's just $r=b-A p$
- Related to the error: Ae=r
- So check if norm(r)<tol*norm(b)
- Play around with tol (maybe 1e-4 is good enough?)
- For smoke, may even be enough to just take a fixed number of iterations

Conjugate Gradient

- Standard iterative method for solving symmetric positive definite systems
- For a fairly exhaustive description, read
- "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain", by J. R. Shewchuk
- Basic idea: steepest descent

Plain vanilla CG

- $r=b-A p \quad$ (p is initial guess)
v $\rho=r^{\top} r$, check if already solved
$\checkmark \mathrm{S}=\mathrm{r}$ (first search direction)
\checkmark Loop:
- t=As
- $\alpha=\rho /\left(s^{\top} t\right) \quad$ (optimum step size)
- $x+=\alpha s, \quad r-=\alpha t, \quad$ check for convergence
- $\rho_{\text {new }}=r^{T} r$
- $\beta=\rho_{\text {new }} / \rho$
- $\mathrm{s}=\mathrm{r}+\beta \mathrm{s} \quad$ (updated search direction)
- $\rho=\rho_{\text {new }}$

