Notes

What does this mean?

- We see the effect of the bottom
- Submerged objects (H decreased) show up as places where surface waves pile up on each other
- Waves pile up on each other (eventually should break) at the beach
- Waves refract to be parallel to the beach
- We can't use Fourier analysis

Shallow water

- Simplified linear analysis before had dispersion relation

$$
c=\sqrt{\frac{g}{k} \tanh k H}
$$

- For shallow water, kH is small (that is, wave lengths are comparable to depth)
- Approximate $\tanh (\mathrm{x})=\mathrm{x}$ for small x :

$$
c=\sqrt{g H}
$$

- Now wave speed is independent of wave number, but dependent on depth
- Waves slow down as they approach the beach

PDE's

- Saving grace: wave speed independent of k means we can solve as a 2D PDE
- We'll derive these "shallow water equations"
- When we linearize, we'll get same wave speed
- Going to PDE's also let's us handle non-square domains, changing boundaries
- The beach, puddles, .
- Objects sticking out of the water (piers, walls, ...) with the right reflections, diffraction, ..
- Dropping objects in the water

Kinematic assumptions

- We'll assume as before water surface is a height field $y=h(x, z, t)$
- Water bottom is $y=-H(x, z, t)$
- Assume water is shallow (H is smaller than wave lengths) and calm (h is much smaller than H)
- For graphics, can be fairly forgiving about violating this...
- On top of this, assume velocity field doesn't vary much in the y direction
- $u=u(x, z, t), w=w(x, z, t)$
- Good approximation since there isn't room for velocity to vary much in y(otherwise would see disturbances in small length-scale features on surface)
- Also assume pressure gradient is essentially vertical
- Good approximation since $\mathrm{p}=0$ on surface, domain is very thin

Pressure

- Look at y-component of momentum equation:

$$
v_{t}+u \cdot \nabla v+\frac{1}{\rho} \frac{\partial p}{\partial y}=-g+v \nabla^{2} v
$$

- Assume small velocity variation - so dominant terms are pressure gradient and gravity:

$$
\frac{1}{\rho} \frac{\partial p}{\partial y}=-g
$$

- Boundary condition at water surface is $\mathrm{p}=0$ again, so can solve for p :

$$
p=\rho g(h-y)
$$

Conservation of mass

- Integrate over a column of water with crosssection $d A$ and height $h+H$
- Total mass is $\rho(\mathrm{h}+\mathrm{H}) \mathrm{dA}$
- Mass flux around cross-section is $\rho(h+H)(u, w)$
v Write down the conservation law
v In differential form (assuming constant density):

$$
\frac{\partial}{\partial t}(h+H)+\nabla \cdot((h+H) u)=0
$$

- Note: switched to 2D so $u=(u, w)$ and $\nabla=(\partial / \partial x, \partial / \partial z)$

Conservation of momentum

- Total momentum in a column:

$$
\int_{-H}^{h} \rho \vec{u}=\rho \vec{u}(h+H)
$$

- Momentum flux is due to two things:
- Transport of material at velocity u with its own momentum:

$$
\int_{-H}^{h}(\rho \stackrel{\rightharpoonup}{u}) \stackrel{\rightharpoonup}{u}
$$

- And applied force due to pressure. Integrate pressure from bottom to top:

$$
\int_{-H}^{h} p=\int_{-H}^{h} \rho g(h-y)=\frac{\rho g}{2}(h+H)^{2}
$$

Pressure on bottom

- Not quite done... If the bottom isn't flat, there's pressure exerted partly in the horizontal plane
- Note $\mathrm{p}=0$ at free surface, so no net force there
- Normal at bottom is: $n=\left(-H_{x},-1,-H_{z}\right)$
- Integrate x and z components of pn over bottom
- (normalization of n and cosine rule for area projection cancel each other out)

$$
-\rho g(h+H) \nabla H d A
$$

Shallow Water Equations

- Then conservation of momentum is:

$$
\frac{\partial}{\partial t}(\rho \vec{u}(h+H))+\nabla \cdot\left(\rho \vec{u} \vec{u}(h+H)+\frac{\rho g}{2}(h+H)^{2}\right)-\rho g(h+H) \nabla H=0
$$

- Together with conservation of mass

$$
\frac{\partial}{\partial t}(h+H)+\nabla \cdot((h+H) u)=0
$$

we have the Shallow Water Equations

Simplifying Conservation of Mass

- Expand the derivatives:

$$
\begin{gathered}
\frac{\partial(h+H)}{\partial t}+u \cdot \nabla(h+H)+(h+H) \nabla \cdot u=0 \\
\frac{D(h+H)}{D t}=-(h+H) \nabla \cdot u
\end{gathered}
$$

- Label the depth $\mathrm{h}+\mathrm{H}$ with $\eta: \frac{D \eta}{D t}=-\eta \nabla \cdot u$
- So water depth gets advected around by velocity, but also changes to take into account divergence

Simplifying Momentum

- Expand the derivatives:
$(\rho \eta u)_{t}+\nabla \cdot\left(\rho u u \eta+\frac{\rho g}{2} \eta^{2}\right)-\rho g \eta \nabla H=0$
$\rho \eta u_{t}+\rho u \eta_{t}+\rho u \nabla \cdot(\eta u)+\rho \eta u \cdot \nabla u+\rho g \eta \nabla \eta-\rho g \eta \nabla H=0$
- Subtract off conservation of mass times velocity:

$$
\rho \eta u_{t}+\rho \eta u \cdot \nabla u+\rho g \eta \nabla \eta-\rho g \eta \nabla H=0
$$

- Divide by density and depth:

$$
u_{t}+u \cdot \nabla u+g \nabla \eta-g \nabla H=0
$$

- Note depth minus H is just h:

$$
\begin{aligned}
& u_{t}+u \cdot \nabla u+g \nabla h=0 \\
& \frac{D u}{D t}=-g \nabla h
\end{aligned}
$$

Interpreting equations

- So velocity is advected around, but also accelerated by gravity pulling down on higher water
- For both height and velocity, we have two operations:
- Advect quantity around (just move it)
- Change it according to some spatial derivatives
- Our numerical scheme will treat these separately: "splitting"

Wave equation

- Only really care about heightfield for rendering
- Differentiate height equation in time and plug in u equation
- Neglect nonlinear (quadratically small) terms to get

$$
h_{t t}=g H \nabla^{2} h
$$

Deja vu

- This is the linear wave equation, with wave speed $\mathrm{c}^{2}=\mathrm{gH}$
- Which is exactly what we derived from the dispersion relation before (after linearizing the equations in a different way)
- But now we have it in a PDE that we have some confidence in
- Can handle varying H , irregular domains...

Shallow water equations

- To recap, using eta for depth=h+H:

$$
\begin{aligned}
\frac{D \eta}{D t} & =-\eta \nabla \cdot u \\
\frac{D u}{D t} & =-g \nabla h
\end{aligned}
$$

-We'll discretize this using "splitting"

- Handle the material derivative first, then the right-hand side terms next
- Intermediate depth and velocity from just the advection part

Scalar advection in 1D

- Let's simplify even more, to just one dimension: $\mathrm{q}_{\mathrm{t}}+\mathrm{uq}_{\mathrm{x}}=0$
- Further assume u=constant
- And let's ignore boundary conditions for now
- E.g. use a periodic boundary
- True solution just translates q around at speed u - shouldn't change shape

Advection

- Let's discretize just the material derivative (advection equation):

$$
q_{t}+u \cdot \nabla q=0 \quad \text { or } \quad \frac{D q}{D t}=0
$$

- For a Lagrangian scheme this is trivial: just move the particle that stores q, don't change the value of q at all

$$
q(x(t), t)=q\left(x_{0}, 0\right)
$$

- For Eulerian schemes it's not so simple

First try: central differences

- Centred-differences give better accuracy
- More terms cancel in Taylor series
- Example:

$$
\frac{\partial q_{i}}{\partial t}=-u\left(\frac{q_{i+1}-q_{i-1}}{2 \Delta x}\right)
$$

- 2nd order accurate in space
- Eigenvalues are pure imaginary - rules out Forward Euler and RK2 in time
-But what does the solution look like?

Testing a pulse

A pulse (initial conditions)

- We know things have to work out nicely in the limit (second order accurate)
- I.e. when the grid is fine enough
- What does that mean? -- when the sampled function looks smooth on the grid
- In graphics, it's just redundant to use a grid that fine
- we can fill in smooth variations with interpolation later
- So we're always concerned about coarse grids == not very smooth data
- Discontinuous pulse is a nice test case

Centered finite differences

- A few time steps (RK4, small Δt) later
- $u=1$, so pulse should just move right without changing shape

Centred finite differences

- A little bit later...

Centred finite differences

- A fair bit later

What went wrong?

- Lots of ways to interpret this error
- Example - phase analysis
- Take a look at what happens to a sinusoid wave numerically
- The amplitude stays constant (good), but the wave speed depends on wave number (bad) - we get dispersion
- So the sinusoids that initially sum up to be a square pulse move at different speeds and separate out
- We see the low frequency ones moving faster...
- But this analysis won't help so much in multidimensions, variable u...

Modified PDE's

- Another way to interpret error - try to account for it in the physics
- Look at truncation error more carefully:

$$
\begin{aligned}
q_{i+1} & =q_{i}+\Delta x \frac{\partial q}{\partial x}+\frac{\Delta x^{2}}{2} \frac{\partial^{2} q}{\partial x^{2}}+\frac{\Delta x^{3}}{6} \frac{\partial^{3} q}{\partial x^{3}}+O\left(\Delta x^{4}\right) \\
q_{i-1} & =q_{i}-\Delta x \frac{\partial q}{\partial x}+\frac{\Delta x^{2}}{2} \frac{\partial^{2} q}{\partial x^{2}}-\frac{\Delta x^{3}}{6} \frac{\partial^{3} q}{\partial x^{3}}+O\left(\Delta x^{4}\right) \\
\frac{q_{i+1}-q_{i-1}}{2 \Delta x} & =\frac{\partial q}{\partial x}+\frac{\Delta x^{2}}{6} \frac{\partial^{3} q}{\partial x^{3}}+O\left(\Delta x^{3}\right)
\end{aligned}
$$

- Up to high order error, we numerically solve

$$
q_{t}+u q_{x}=-\frac{u \Delta x^{2}}{6} q_{x x x}
$$

Interpretation

$$
q_{t}+u q_{x}=-\frac{u \Delta x^{6}}{6} q_{x x x}
$$

- Extra term is "dispersion"
- Does exactly what phase analysis tells us
- Behaves a bit like surface tension...
- We want a numerical method with a different sort of truncation error
- Any centred scheme ends up giving an odd truncation error --dispersion
- Let's look at one-sided schemes

Upwind differencing

- Think physically:
- True solution is that q just translates at velocity u
- Information flows with u
- So to determine future values of q at a grid point, need to look "upwind" -- where the information will blow from
- Values of q "downwind" only have any relevance if we know q is smooth -- and we're assuming it isn't

1 st order upwind

- Basic idea: look at sign of u to figure out which direction we should get information
- If $u<0$ then $\partial q / \partial x \approx\left(q_{i+1}-q_{i}\right) / \Delta x$
- If $u>0$ then $\partial q / \partial x \approx\left(q_{i}-q_{i-1}\right) / \Delta x$
- Only 1st order accurate though
- Let's see how it does on the pulse...

Modified PDE again

- Let's see what the modified PDE is this time

$$
\begin{aligned}
q_{i+1} & =q_{i}+\Delta x \frac{\partial q}{\partial x}+\frac{\Delta x^{2}}{2} \frac{\partial^{2} q}{\partial x^{2}}+O\left(\Delta x^{3}\right) \\
\frac{q_{i+1}-q_{i}}{\Delta x} & =\frac{\partial q}{\partial x}+\frac{\Delta x}{2} \frac{\partial^{2} q}{\partial x^{2}}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

- For $\mathrm{u}<0$ then we have $q_{t}+u q_{x}=-\frac{u \Delta x}{2} q_{x x}$
- And for $u>0$ we have (basically flip sign of Δx)

$$
q_{t}+u q_{x}=\frac{u \Delta x}{2} q_{x x}
$$

- Putting them together, 1st order upwind numerical solves (to 2nd order accuracy)

$$
q_{t}+u q_{x}=\left|\frac{u \Delta x}{2}\right| q_{x x}
$$

Interpretation

- The extra term (that disappears as we refine the grid) is diffusion or viscosity
- So sharp pulse gets blurred out into a hump, and eventually melts to nothing
- It looks a lot better, but still not great
- Again, we want to pack as much detail as possible onto our coarse grid
- With this scheme, the detail melts away to nothing pretty fast
- Note: unless grid is really fine, the numerical viscosity is much larger than physical viscosity - so might as well not use the latter

Fixing upwind method

- Natural answer - reduce the error by going to higher order - but life isn't so simple
- High order difference formulas can overshoot in extrapolating
- If we difference over a discontinuity
- Stability becomes a real problem
- Go nonlinear (even though problem is linear)
- "limiters" - use high order unless you detect a (near-)overshoot, then go back to 1st order upwind
- "ENO" - try a few different high order formulas, pick smoothest

Exploiting Lagrangian view

- But wait! This was trivial for Lagrangian (particle) methods!
- We still want to stick an Eulerian grid for now, but somehow exploit the fact that
- If we know q at some point x at time t, we just follow a particle through the flow starting at x to see where that value of q ends up

$$
\begin{aligned}
& q(x(t+\Delta t), t+\Delta t)=q(x(t), t) \\
& \frac{d x}{d t}=u(x), \quad x(t)=x_{0}
\end{aligned}
$$

Looking backwards

- Problem with tracing particles - we want values at grid nodes at the end of the step
- Particles could end up anywhere
- But... we can look backwards in time

$$
\begin{aligned}
& q_{i j k}=q(x(t-\Delta t), t-\Delta t) \\
& \frac{d x}{d t}=u(x), \quad x(t)=x_{i j k}
\end{aligned}
$$

- Same formulas as before - but new interpretation
- To get value of q at a grid point, follow a particle backwards through flow to wherever it started

Tracing

- The errors we make in tracing backwards aren't too big a deal
- We don't compound them - stability isn't an issue
- How accurate we are in tracing doesn't effect shape of q much, just location
- Whether we get too much blurring, oscillations, or a nice result is really up to interpolation
- Thus look at "Forward" Euler and RK2

Semi-Lagrangian method

- Developed in weather prediction, going back to the 50's
- Also dubbed "stable fluids" in graphics (reinvention by Stam '99)
- To find new value of q at a grid point, trace particle backwards from grid point (with velocity u) for $-\Delta t$ and interpolate from old values of q
- Two questions
- How do we trace?
- How do we interpolate?

Tracing: 1st order

- We're at grid node (i,j,k) at position $\mathrm{x}_{\mathrm{ijk}}$
- Trace backwards through flow for $-\Delta \mathrm{t}$

$$
x_{o l d}=x_{i j k}-\Delta t u_{i j k}
$$

- Note - using u value at grid point (what we know already) like Forward Euler.
- Then can get new q value (with interpolation)

$$
\begin{aligned}
q_{i j k}^{n+1} & =q^{n}\left(x_{o l d}\right) \\
& =q^{n}\left(x_{i j k}-\Delta t u_{i j k}\right)
\end{aligned}
$$

Interpolation

- "First" order accurate: nearest neighbour
- Just pick q value at grid node closest to $\mathrm{x}_{\text {old }}$
- Doesn't work for slow fluid (small time steps) -nothing changes!
- When we divide by grid spacing to put in terms of advection equation, drops to zero'th order accuracy
- "Second" order accurate: linear or bilinear (2D)
- Ends up first order in advection equation
- Still fast, easy to handle boundary conditions...
- How well does it work?
- Error in linear interpolation is proportional to

$$
\Delta x^{2} \frac{\partial^{2} q}{\partial x^{2}}
$$

- Modified PDE ends up something like...

$$
\frac{D q}{D t}=k(\Delta t) \Delta x^{2} \frac{\partial^{2} q}{\partial x^{2}}
$$

- We have numerical viscosity, things will smear out
- For reasonable time steps, k looks like $1 / \Delta t \sim 1 / \Delta x$
- [Equivalent to 1st order upwind for CFL Δt]
- In practice, too much smearing for inviscid fluids

Cubic interpolation

- To fix the problem of excessive smearing, go to higher order
- E.g. use cubic splines
- Finding interpolating C^{2} cubic spline is a little painful, an alternative is the
- ${ }^{1}$ Catmull-Rom (cubic Hermite) spline
- [derive]
- Introduces overshoot problems
- Stability isn't so easy to guarantee anymore

Min-mod limited Catmull-Rom

- See Fedkiw, Stam, Jensen ‘01
- Trick is to check if either slope at the endpoints of the interval has the wrong sign
- If so, clamp the slope to zero
- Still use cubic Hermite formulas with more reliable slopes
- This has same stability guarantee as linear interpolation
- But in smoother parts of flow, higher order accurate
- Called "high resolution"
- Still has issues with boundary conditions...

MAC grid

- We like central differences - more accurate, unbiased
- So natural to use a staggered grid for velocity and height variables
- Called MAC grid after the Marker-and-Cell method (Harlow and Welch '65) that introduced it
- Heights at cell centres
- u-velocities at x-faces of cells
- w-velocities at z-faces of cells

Back to Shallow Water

- So we can now handle advection of both water depth and each component of water velocity
- Left with the divergence and gradient terms

$$
\begin{aligned}
& \frac{\partial \eta}{\partial t}=-\eta\left(\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}\right) \\
& \frac{\partial u}{\partial t}=-g \frac{\partial h}{\partial x} \\
& \frac{\partial w}{\partial t}=-g \frac{\partial h}{\partial z}
\end{aligned}
$$

Spatial Discretization

- So on the MAC grid:

$$
\begin{aligned}
& \frac{\partial \eta_{i j}}{\partial t}=-\eta_{i j}\left(\frac{u_{i+1 / 2, j}-u_{i-1 / 2, j}}{\Delta x}+\frac{w_{i, j+1 / 2}-w_{i, j-1 / 2}}{\Delta z}\right) \\
& \frac{\partial u_{i+1 / 2, j}}{\partial t}=-g \frac{h_{i+1, j}-h_{i, j}}{\Delta x} \\
& \frac{\partial w_{i, j+1 / 2}}{\partial t}=-g \frac{h_{i, j+1}-h_{i, j}}{\Delta z}
\end{aligned}
$$

