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Notes

! Thursday: class will begin late, 11:30am
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Viscosity

! In reality, nearby molecules travelling at
different velocities occasionally bump into
each other, transferring energy
• Differences in velocity reduced (damping)

• Measure this by strain rate (time derivative of
strain, or how far velocity field is from rigid
motion)

• Add terms to our constitutive law
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Strain rate

! At any instant in time, measure how fast chunk
of material is deforming from its current state
• Not from its original state

• So we"re looking at infinitesimal, incremental strain
updates

• Can use linear Cauchy strain!

! So the strain rate tensor is
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Viscous stress

! As with linear elasticity, end up with two parameters if we
want isotropy:

• µ and ! are coefficients of viscosity (first and second)

• These are not the Lame coefficients! Just use the same symbols

• ! damps only compression/expansion

" Usually !!-2/3µ (exact for monatomic gases)

" So end up with
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Navier-Stokes

! Navier-Stokes equations include the viscous
stress

! Incompressible version:

! Often (but not always) viscosity µ is constant,
and this reduces to

• Call $=µ/# the “kinematic viscosity”
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Nondimensionalization

! Actually go even further

! Select a characteristic length L
• e.g. the width of the domain,

! And a typical velocity U
• e.g. the speed of the incoming flow

! Rescale terms

• x"=x/L, u"=u/U, t"=tU/L, p"=p/#U2

so they all are dimensionless
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Nondimensional parameters

! Re=UL/$ is the Reynold"s number

• The smaller it is, the more viscosity plays a
role in the flow

• High Reynold"s numbers are hard to simulate

! Fr=             is the Froude number
• The smaller it is, the more gravity plays a role

in the flow

• Note: often can ignore gravity (pressure
gradient cancels it out)
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Why nondimensionalize?

! Think of it as a user-interface issue

! It lets you focus on what parameters matter
• If you scale your problem so nondimensional

parameters stay constant, solution scales

! Code rot --- you may start off with code which
has true dimensions, but as you hack around
they lose meaning
• If you"re nondimensionalized, there should be only

one or two parameters to play with

! Not always the way to go --- you can look up
material constants, but not e.g. Reynolds
numbers
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Other quantities

! We may want to carry around auxiliary
quantities
• E.g. temperature, the type of fluid (if we have

a mix), concentration of smoke, etc.

! Use material derivative as before

! E.g. if quantity doesn"t change, just is
transported (“advected”) around:
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Boundary conditions

! Inviscid flow:
• Solid wall: u•n=0

• Free surface: p=0  (or atmospheric pressure)
• Moving solid wall: u•n=uwall•n

! Also enforced in-flow/out-flow

• Between two fluids: u1•n=u2•n and p1=p2+%&

! Viscous flow:
• No-slip wall: u=0

• Other boundaries can involve coupling tangential
components of stress tensor…

! Pressure/velocity coupling at boundary:
• u•n modified by #p/#n
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What now?

! Can numerically solve the full equations
• Will do this later

• Not so simple, could be expensive (3D)

! Or make assumptions and simplify them,
then solve numerically
• Simplify flow (e.g. irrotational)

• Simplify dimensionality (e.g. go to 2D)
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Vorticity

! How do we measure rotation?
• Vorticity of a vector field (velocity) is:

• Proportional (but not equal) to angular velocity
of a rigid body - off by a factor of 2

! Vorticity is what makes smoke look
interesting
• Turbulence
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Vorticity equation

! Start with N-S, constant viscosity and density

! Take curl of whole equation

! Lots of terms are zero:
• g is constant (or the potential of some field)

• With constant density, pressure term too

! Then use vector identities to simplify…
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Vorticity equation continued

! Simplify with more vector identities, and assume
incompressible to get:

! Important result: Kelvin Circulation Theorem

• Roughly speaking: if '=0 initially, and there"s no
viscosisty, '=0 forever after (following a chunk of
fluid)

" If fluid starts off irrotational, it will stay that way
(in many circumstances)

� 

D!

Dt
= ! "#u+ $#

2
!

15cs533d-term1-2005

Potential flow

! If velocity is irrotational:

• Which it often is in simple laminar flow

! Then there must be a stream function (potential)
such that:

! Solve for incompressibility:

! If u•n is known at boundary, we can solve it
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Potential in time

! What if we have a free surface?

! Use vector identity u•(u=(()u))u+(|u|2/2

" Assume

• incompressible ((•u=0), inviscid, irrotational (()u=0)

• constant density

• thus potential flow (u=(*, (2*=0)

" Then momentum equation simplifies
(using G=-gy for gravitational potential)
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Bernoulli’s equation

! Every term in the simplified momentum
equation is a gradient: integrate to get

• (Remember Bernoulli"s law for pressure?)

! This tells us how the potential should
evolve in time

� 

!t +
1

2
u
2

+
p

"
= #G

18cs533d-term1-2005

Water waves

! For small waves (no breaking), can reduce
geometry of water to 2D heightfield

! Can reduce the physics to 2D also
• How do surface waves propagate?

! Plan of attack
• Start with potential flow, Bernoulli"s equation

• Write down boundary conditions at water surface

• Simplify 3D structure to 2D
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Set up

! We"ll take y=0 as the height of the water at
rest

! H is the depth (y=-H is the sea bottom)

! h is the current height of the water at (x,z)

! Simplification: velocities very small (small
amplitude waves)
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Boundaries

! At sea floor (y=-H), v=0

! At sea surface (y=h!0), v=ht

• Note again - assuming very small horizontal motion

! At sea surface (y=h!0), p=0
• Or atmospheric pressure, but we only care about

pressure differences

• Use Bernoulli"s equation, throw out small velocity
squared term, use p=0,

� 

!y = 0

� 

!y = ht

� 

!t = "gh



21cs533d-term1-2005

Finding a wave solution

! Plug in *=f(y)sin(K•(x,z)-'t)

• In other words, do a Fourier analysis in
horizontal component, assume nothing much
happens in vertical

• Solving (2*=0 with boundary conditions on *y

gives

• Pressure boundary condition then gives (with
k=|K|, the magnitude of K)
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Dispersion relation

! So the wave speed c is

! Notice that waves of different wave-
numbers k have different speeds
• Separate or disperse in time

! For deep water (H big, k reasonable -- not
tsunamis) tanh(kH)!1
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Simulating the ocean

! Far from land, a reasonable thing to do is
• Do Fourier decomposition of initial surface

height

• Evolve each wave according to given wave
speed (dispersion relation)
! Update phase, use FFT to evaluate

! How do we get the initial spectrum?
• Measure it! (oceanography)
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Energy spectrum

! Fourier decomposition of height field:

! “Energy” in K=(i,j) is

! Oceanographic measurements have found
models for expected value of S(K)
(statistical description)
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Phillips Spectrum

! For a “fully developed” sea
• wind has been blowing a long time over a large area,

statistical distribution of spectrum has stabilized

! The Phillips spectrum is: [Tessendorf…]

• A is an arbitrary amplitude

• L=|W|2/g is largest size of waves due to wind velocity
W and gravity g

• Little l is the smallest length scale you want to model� 
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Fourier synthesis

! From the prescribed S(K), generate actual
Fourier coefficients

• Xi is a random number with mean 0, standard
deviation 1 (Gaussian)

• Uniform numbers from unit circles aren"t terrible either

! Want real-valued h, so must have

• Or give only half the coefficients to FFT routine and
specify you want real output
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Time evolution

! Dispersion relation gives us '(K)

" At time t, want

" So then coefficients at time t are
• For j$0:

• Others: figure out from conjugacy condition (or leave
it up to real-valued FFT to fill them in)� 

h(x, t) = ˆ h (K,0)e
!1 K "x!#t( )

K = (i, j )

$

= ˆ h (K,0)e
! !1#t

e
!1K "x

K = (i, j )

$

� 

ˆ h i, j,t( ) = ˆ h i, j,0( )e! !1"t

28cs533d-term1-2005

Picking parameters

! Need to fix grid for Fourier synthesis
(e.g. 1024x1024 height field grid)

! Grid spacing shouldn"t be less than e.g. 2cm (smaller
than that - surface tension, nonlinear wave terms, etc.
take over)
• Take little l (cut-off) a few times larger

! Total grid size should be greater than but still
comparable to L in Phillips spectrum (depends on wind
speed and gravity)

! Amplitude A shouldn"t be too large
• Assumed waves weren"t very steep
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Note on FFT output

! FFT takes grid of coefficients, outputs grid of
heights

! It"s up to you to map that grid
(0…n-1, 0…n-1) to world-space coordinates

! In practice: scale by something like L/n
• Adjust scale factor, amplitude, etc. until it looks nice

! Alternatively: look up exactly what your FFT
routines computes, figure out the “true” scale
factor to get world-space coordinates
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Choppy waves

! See Tessendorf for more explanation

! Nonlinearities cause real waves to have
sharper peaks and flatter troughs than
linear Fourier synthesis gives

! Can manipulate height field to give this
effect

• Distort grid with (x,z) -> (x,z)+!D(x,z,t)
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Choppiness problems

! The distorted grid can actually tangle up
(Jacobian has negative determinant - not
1-1 anymore)
• Can detect this, do stuff (add particles for

foam, spray?)


