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Notes

! I am back, but still catching up

! Assignment 2 is due today (or next time
I!m in the dept following today)

! Final project proposals:
• I haven!t sorted through my email, but make

sure you send me something now (even quite
vague)

• Let!s make sure everyone has their project
started this weekend or early next week
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Multi-Dimensional Plasticity

! Simplest model: total strain is sum of
elastic and plastic parts:  !=!e+ !p

" Stress only depends on elastic part
(so rest state includes plastic strain):
#=#(!e)

" If # is too big, we yield, and transfer some
of !e into !p so that # is acceptably small
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Multi-Dimensional Yield criteria

! Lots of complicated stuff happens when
materials yield
• Metals: dislocations moving around

• Polymers: molecules sliding against each other

• Etc.

! Difficult to characterize exactly when plasticity
(yielding) starts
• Work hardening etc. mean it changes all the time too

! Approximations needed
• Big two: Tresca and Von Mises
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Yielding

! First note that shear stress is the important
quantity
• Materials (almost) never can permanently

change their volume

• Plasticity should ignore volume-changing
stress

! So make sure that if we add kI to # it
doesn!t change yield condition
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Tresca yield criterion

! This is the simplest description:

• Change basis to diagonalize #

• Look at normal stresses (i.e. the eigenvalues of #)

• No yield if #max-#min " #Y

" Tends to be conservative (rarely predicts
yielding when it shouldn!t happen)

" But, not so accurate for some stress states
• Doesn!t depend on middle normal stress at all

" Big problem (mathematically): not smooth
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Von Mises yield criterion

! If the stress has been diagonalized:

! More generally:

! This is the same thing as the Frobenius norm of the
deviatoric part of stress
• i.e. after subtracting off volume-changing part:
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Linear elasticity shortcut

! For linear (and isotropic) elasticity, apart
from the volume-changing part which we
cancel off, stress is just a scalar multiple of
strain
• (ignoring damping)

! So can evaluate von Mises with elastic
strain tensor too (and an appropriately
scaled yield strain)
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Perfect plastic flow

! Once yield condition says so, need to start
changing plastic strain

! The magnitude of the change of plastic strain
should be such that we stay on the yield surface

• I.e. maintain f(#)=0
(where f(#)"0 is, say, the von Mises condition)

! The direction that plastic strain changes isn!t as
straightforward

! “Associative” plasticity:
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˙ ! p = "
#f

#$
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Algorithm

! After a time step, check von Mises criterion:
   is                                              ?

! If so, need to update plastic strain:

• with $ chosen so that f(#new)=0
(easy for linear elasticity)
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Sand (Granular Materials)

! Things get a little more complicated for
sand, soil, powders, etc.

! Yielding actually involves friction, and thus
is pressure (the trace of stress) dependent

! Flow rule can!t be associated

! See Zhu and Bridson, SIGGRAPH!05 for
quick-and-dirty hacks… :-)

11cs533d-term1-2005

Multi-Dimensional Fracture

! Smooth stress to avoid artifacts (average with
neighbouring elements)

! Look at largest eigenvalue of stress in each
element

! If larger than threshhold, introduce crack
perpendicular to eigenvector

! Big question: what to do with the mesh?
• Simplest: just separate along closest mesh face
• Or split elements up: O!Brien and Hodgins

SIGGRAPH!99
• Or model crack path with embedded geometry:

Molino et al. SIGGRAPH!04
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Fluids
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Fluid mechanics

! We already figured out the equations of motion for
continuum mechanics

! Just need a constitutive model

! We!ll look at the constitutive model for “Newtonian” fluids
next
• Remarkably good model for water, air, and many other simple

fluids

• Only starts to break down in extreme situations, or more complex
fluids (e.g. viscoelastic substances)
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!˙ ̇ x = " #$ + !g
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Inviscid Euler model

! Inviscid=no viscosity

! Great model for most situations
• Numerical methods usually end up with viscosity-like error terms

anyways…

! Constitutive law is very simple:

• New scalar unknown: pressure p

• Barotropic flows: p is just a function of density
(e.g. perfect gas law p=k(%-%0)+p0 perhaps)

• For more complex flows need heavy-duty thermodynamics: an
equation of state for pressure, equation for evolution of internal
energy (heat), …

� 

! ij = "p#ij
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Lagrangian viewpoint

! We!ve been working with Lagrangian methods
so far
• Identify chunks of material,

track their motion in time,
differentiate world-space position or velocity w.r.t.
material coordinates to get forces

• In particular, use a mesh connecting particles to
approximate derivatives (with FVM or FEM)

! Bad idea for most fluids
• [vortices, turbulence]

• At least with a fixed mesh…
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Eulerian viewpoint

! Take a fixed grid in world space, track how
velocity changes at a point

! Even for the craziest of flows, our grid is always
nice

! (Usually) forget about object space and where a
chunk of material originally came from
• Irrelevant for extreme inelasticity

• Just keep track of velocity, density, and whatever else
is needed
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Conservation laws

! Identify any fixed volume of space

! Integrate some conserved quantity in it
(e.g. mass, momentum, energy, …)

! Integral changes in time only according to
how fast it is being transferred from/to
surrounding space
• Called the flux

• [divergence form]
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Conservation of Mass

! Also called the continuity equation
(makes sure matter is continuous)

! Let!s look at the total mass of a volume
(integral of density)

! Mass can only be transferred by moving it:
flux must be %u
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Material derivative

! A lot of physics just naturally happens in the
Lagrangian viewpoint
• E.g. the acceleration of a material point results from

the sum of forces on it

• How do we relate that to rate of change of velocity
measured at a fixed point in space?

• Can!t directly: need to get at Lagrangian stuff
somehow

! The material derivative of a property q of the
material (i.e. a quantity that gets carried along
with the fluid) is

� 

Dq

Dt
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Finding the material derivative

! Using object-space coordinates p and map x=X(p) to world-space,
then material derivative is just

! Notation: u is velocity (in fluids, usually use u but occasionally v or V,
and components of the velocity vector are sometimes u,v,w)
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Compressible Flow

! In general, density changes as fluid compresses or
expands

! When is this important?
• Sound waves (and/or high speed flow where motion is getting

close to speed of sound - Mach numbers above 0.3?)

• Shock waves

! Often not important scientifically, almost never visually
significant
• Though the effect of e.g. a blast wave is visible! But the shock

dynamics usually can be hugely simplified for graphics
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Incompressible flow

! So we!ll just look at incompressible flow,
where density of a chunk of fluid never
changes
• Note: fluid density may not be constant

throughout space - different fluids mixed
together…

! That is, D%/Dt=0
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Simplifying

! Incompressibility:

! Conservation of mass:

! Subtract the two equations, divide by %:

" Incompressible == divergence-free velocity
• Even if density isn!t uniform!
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Conservation of momentum

! Short cut: in

use material derivative:

! Or go by conservation law, with the flux due to
transport of momentum and due to stress:
• Equivalent, using conservation of mass
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Inviscid momentum equation

! Plug in simplest consitutive law (#=-p')
from before to get

• Together with conservation of mass: the Euler
equations

� 

! ut + u " #u( ) = $#p + !g

ut + u " #u+
1

!
#p = g
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Incompressible inviscid flow

! So the equations are:

! 4 equations, 4 unknowns (u, p)

! Pressure p is just whatever it takes to make velocity
divergence-free
• Actually a “Lagrange multiplier” for enforcing the

incompressibility constraint� 

ut + u ! "u+
1

#
"p = g

" ! u = 0

27cs533d-term1-2005

Pressure solve

! To see what pressure is, take divergence of
momentum equation

! For constant density, just get Laplacian (and this
is Poisson!s equation)

! Important numerical methods use this approach
to find pressure
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Projection

! Note that &•ut=0 so in fact

" After we add &p/% to u•&u, divergence must be zero

" So if we tried to solve for additional pressure, we get
zero

" Pressure solve is linear too

" Thus what we!re really doing is a projection of u•&u-g
onto the subspace of divergence-free functions:
ut+P(u•&u-g)=0
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