- In reality, nearby molecules travelling at different velocities occasionally bump into each other, transferring energy
 - Differences in velocity reduced (damping)
 - Measure this by strain rate (time derivative of strain, or how far velocity field is from rigid motion)
 - · Add terms to our constitutive law

cs533d-winter-2005 2

Strain rate

- At any instant in time, measure how fast chunk of material is deforming from its current state
 - Not from its original state
 - So we're looking at infinitesimal, incremental strain updates
 - Can use linear Cauchy strain!
- So the strain rate tensor is

$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Viscous stress

 As with linear elasticity, end up with two parameters if we want isotropy:

$$\sigma_{ij}^{viscous} = 2\mu\dot{\varepsilon}_{ij} + \lambda\dot{\varepsilon}_{kk}\delta_{ij}$$

- μ and λ are coefficients of viscosity (first and second)
- These are not the Lame coefficients! Just use the same symbols
- λ damps only compression/expansion
- υ Usually $\lambda \approx -2/3\mu$ (exact for monatomic gases)
- v So end up with $\sigma_{ij}^{viscous} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right)$

cs533d-winter-2005

Navier-Stokes

- Navier-Stokes equations include the viscous stress
- Incompressible version:

$$u_t + u \cdot \nabla u + \frac{1}{\rho} \nabla p = g + \frac{1}{\rho} \nabla \cdot \mu \Big(\nabla u + \nabla u^T \Big)$$

$$\nabla \cdot u = 0$$

 Often (but **not** always) viscosity μ is constant, and this reduces to

$$u_t + u \cdot \nabla u + \frac{1}{\rho} \nabla p = g + \frac{\mu}{\rho} \nabla^2 u$$

• Call $v=\mu/\rho$ the "kinematic viscosity"

cs533d-winter-2005

cs533d-winter-2005

cs533d-winter-2005

3

Nondimensionalization

- Actually go even further
- Select a characteristic length L
 - e.g. the width of the domain,
- And a typical velocity U
 - e.g. the speed of the incoming flow
- Rescale terms
 - x'=x/L, u'=u/U, t'=tU/L, p'=p/pU² so they all are dimensionless

$$u'_{t} + u' \cdot \nabla u' + \nabla p' = \frac{Lg}{U^{2}} + \frac{v}{UL} \nabla^{2} u'$$

cs533d-winter-2005

Nondimensional parameters

- ♦ Re=UL/v is the Reynold's number
 - The smaller it is, the more viscosity plays a role in the flow
 - · High Reynold's numbers are hard to simulate
- Fr= $U/\sqrt{|g|L}$ is the Froude number
 - The smaller it is, the more gravity plays a role in the flow
 - Note: often can ignore gravity (pressure gradient cancels it out)

$$u_{t} + u \cdot \nabla u + \nabla p = \frac{(0, -1, 0)}{\mathrm{Fr}^{2}} + \frac{1}{\mathrm{Re}} \nabla^{2} u_{\mathrm{cs533d-winter-2005}}$$

Why nondimensionalize?

- Think of it as a user-interface issue
- It lets you focus on what parameters matter
 If you scale your problem so nondimensional parameters stay constant, solution scales
- Code rot --- you may start off with code which has true dimensions, but as you hack around they lose meaning
 - If you're nondimensionalized, there should be only one or two parameters to play with
- Not always the way to go --- you can look up material constants, but not e.g. Reynolds numbers

cs533d-winter-2005

Other quantities

- We may want to carry around auxiliary quantities
 - E.g. temperature, the type of fluid (if we have a mix), concentration of smoke, etc.
- Use material derivative as before
- E.g. if quantity doesn't change, just is transported ("advected") around:

$$\frac{Dq}{Dt} = q_t + \underbrace{u \cdot \nabla q}_{advection} = 0$$

cs533d-winter-2005 9

Boundary conditions

- Inviscid flow:
 - Solid wall: u•n=0
 - Free surface: p=0 (or atmospheric pressure)
 - Moving solid wall: u•n=u_{wall}•n
 Also enforced in-flow/out-flow
 - Between two fluids: $u_1 \cdot n = u_2 \cdot n$ and $p_1 = p_2 + \sigma \kappa$
- Viscous flow:
 - No-slip wall: u=0
 - Other boundaries can involve coupling tangential components of stress tensor...
- Pressure/velocity coupling at boundary:
 - u•n modified by ∂p/∂n

cs533d-winter-2005 10

What now?

- Can solve numerically the full equations
 - · Will do this later
 - Not so simple, could be expensive (3D)
- Or make assumptions and simplify them, then solve numerically
 - Simplify flow (e.g. irrotational)
 - Simplify dimensionality (e.g. go to 2D)

- How do we measure rotation?
 - Vorticity of a vector field (velocity) is: $\omega = \nabla \times u$
 - Proportional (but not equal) to angular velocity of a rigid body off by a factor of 2
- Vorticity is what makes smoke look interesting
 - Turbulence

Vorticity equation

- Start with N-S, constant viscosity and density $u_t + u \cdot \nabla u + \frac{1}{\rho} \nabla p = g + v \nabla^2 u$
- Take curl of whole equation $\nabla \times u_t + \nabla \times (u \cdot \nabla u) + \nabla \times \frac{1}{\rho} \nabla p = \nabla \times g + \nabla \times (v \nabla^2 u)$
- Lots of terms are zero:
 - g is constant (or the potential of some field)
 - With constant density, pressure term too
- $\nabla \times u_t + \nabla \times (u \cdot \nabla u) = v \nabla \times \nabla^2 u$ • Then use vector identities to simplify...
 - $\nabla \times u_t + \nabla \times \left((\nabla \times u) \times u + \frac{1}{2} \nabla u^2 \right) = v \nabla^2 (\nabla \times u)$

 $\omega_t + \nabla \times (\omega \times u) = v \nabla^2 \omega$

cs533d-winter-2005 13

cs533d-winter-2005

15

Vorticity equation continued

 Simplify with more vector identities, and assume incompressible to get:

$$\frac{D\omega}{Dt} = \omega \cdot \nabla u + v \nabla^2 \omega$$

- Important result: Kelvin Circulation Theorem
 - Roughly speaking: if ω=0 initially, and there's no viscosisty, ω=0 forever after (following a chunk of fluid)
- $\upsilon~$ If fluid starts off irrotational, it will stay that way (in many circumstances)

cs533d-winter-2005 14

Potential flow

If velocity is irrotational:

$$\nabla \times u = 0$$

- Which it often is in simple laminar flow
- Then there must be a stream function (potential) such that: $u = \nabla \phi$
- Solve for incompressibility:

$$\nabla \cdot \nabla \phi = 0$$

+ If u•n is known at boundary, we can solve it

Potential in time

- What if we have a free surface?
- ◆ Use vector identity u•∇u=(∇×u)×u+∇lul²/2
- υ Assume
 - incompressible (∇•u=0), inviscid, irrotational (∇×u=0)
 - constant density
 - thus potential flow ($u=\nabla\phi$, $\nabla^2\phi=0$)
- υ Then momentum equation simplifies (using G=-gy for gravitational potential)

$$\begin{split} u_t + \left(\nabla \times u \right) &\times u + \frac{1}{2} \nabla |u|^2 + \frac{1}{\rho} \nabla p = g \\ \nabla \phi_t + \frac{1}{2} \nabla |u|^2 + \frac{1}{\rho} \nabla p = -\nabla G \end{split}$$

cs533d-winter-2005 16

Bernoulli's equation

• Every term in the simplified momentum equation is a gradient: integrate to get

$$\phi_t + \frac{1}{2}u^2 + \frac{p}{2} = -G$$

- (Remember Bernoulli's law for pressure?)
- This tells us how the potential should evolve in time

Water waves

- For small waves (no breaking), can reduce geometry of water to 2D heightfield
- Can reduce the physics to 2D also
 How do surface waves propagate?
- Plan of attack
 - Start with potential flow, Bernoulli's equation
 - Write down boundary conditions at water surface
 - Simplify 3D structure to 2D

Boundaries

- We'll take y=0 as the height of the water at rest
- H is the depth (y=-H is the sea bottom)
- h is the current height of the water at (x,z)
- Simplification: velocities very small (small amplitude waves)

cs533d-winter-2005

19

- At sea floor (y=-H), v=0 $\phi_y = 0$
- At sea surface (y=h≈0), v=h_t
 - Note again assuming very small horizontal motion $\phi_{\mathrm{v}} = h_{\mathrm{r}}$
- At sea surface (y=h≈0), p=0
 - Or atmospheric pressure, but we only care about pressure differences
 - Use Bernoulli's equation, throw out small velocity squared term, use p=0,

 $\phi_t = -gh$

cs533d-winter-2005 20

Finding a wave solution

- Plug in $\phi = f(y) \sin(K \cdot (x,z) \cdot \omega t)$
 - In other words, do a Fourier analysis in horizontal component, assume nothing much happens in vertical
 - Solving $\nabla^2 \phi = 0$ with boundary conditions on ϕ_y gives $\omega \cosh(|K|(y+H))$

$$\phi = A \frac{\omega}{|K|} \frac{\cosh(|K|(y+H))}{\sinh(|K|H)} \sin(K \cdot (x,z) - \omega t)$$

• Pressure boundary condition then gives (with k=IKI, the magnitude of K)

 $\omega = \sqrt{gk} \tanh kH$

Dispersion relation

• So the wave speed c is

$$c = \frac{\omega}{k} = \sqrt{\frac{g}{k} \tanh kH}$$

- Notice that waves of different wavenumbers k have different speeds
 - Separate or disperse in time
- For deep water (H big, k reasonable -- not tsunamis) tanh(kH)≈1

cs533d-winter-2005 22

Simulating the ocean

- Far from land, a reasonable thing to do is
 - Do Fourier decomposition of initial surface height
 - Evolve each wave according to given wave speed (dispersion relation)
 - Update phase, use FFT to evaluate
- How do we get the initial spectrum?
 - Measure it! (oceanography)

Energy spectrum

• Fourier decomposition of height field:

$$h(x,z,t) = \sum \hat{h}(i,j,t) e^{\sqrt{-1}(i,j)\cdot(x)}$$

- "Energy" in K=(i,j) is $S(K) = |\hat{h}(K)|^2$
- Oceanographic measurements have found models for expected value of S(K) (statistical description)

cs533d-winter-2005 21

- For a "fully developed" sea
 - wind has been blowing a long time over a large area, statistical distribution of spectrum has stabilized
- The Phillips spectrum is: [Tessendorf...]

$$S(K) = A \frac{1}{k^4} \exp\left(\frac{-1}{\left(kL\right)^2} - \left(kl\right)^2\right) \left(\frac{|K \cdot W|}{|K||W|}\right)^2$$

- A is an arbitrary amplitude
- L=IWI²/g is largest size of waves due to wind velocity W and gravity g
- · Little I is the smallest length scale you want to model

cs533d-winter-2005 25

cs533d-winter-2005

27

Fourier synthesis

 From the prescribed S(K), generate actual Fourier coefficients

$$\hat{h}(K,0) = \frac{1}{\sqrt{2}} (X_1 + X_2 \sqrt{-1}) \sqrt{S(K)}$$

- X_i is a random number with mean 0, standard deviation 1 (Gaussian)
- Uniform numbers from unit circles aren't terrible either
- Want real-valued h, so must have

$$h(K) = h(-K)$$

 Or give only half the coefficients to FFT routine and specify you want real output

cs533d-winter-2005 26

Time evolution

Dispersion relation gives us ω(K)

v At time t, want $h(x,t) = \sum_{K=(i,j)} \hat{h}(K,0) e^{\sqrt{-1}(K \cdot x - \omega t)}$ $\sum_{K=(i,j)} \hat{h}(K,0) e^{-\sqrt{-1}\omega t} e^{\sqrt{-1}K \cdot x}$

$$=\sum_{K=(i,j)}\hat{h}(K,0)e^{-\sqrt{-1}\omega t}e^{-\frac{1}{2}\omega t}$$

- υ So then coefficients at time t are
 - For j≥0:
 - Others: figure out from conjugacy condition (or leave it up to real-valued FFT to fill them in)

$$\hat{h}(i,j,t) = \hat{h}(i,j,0)e^{-\sqrt{-1}\omega}$$

Picking parameters

- Need to fix grid for Fourier synthesis (e.g. 1024x1024 height field grid)
- Grid spacing shouldn't be less than e.g. 2cm (smaller than that - surface tension, nonlinear wave terms, etc. take over)
 - Take little I (cut-off) a few times larger
- Total grid size should be greater than but still comparable to L in Phillips spectrum (depends on wind speed and gravity)
- Amplitude A shouldn't be too large
 Assumed waves weren't very steep

cs533d-winter-2005 28

Note on FFT output

- FFT takes grid of coefficients, outputs grid of heights
- It's up to you to map that grid (0...n-1, 0...n-1) to world-space coordinates
- In practice: scale by something like L/n
 - Adjust scale factor, amplitude, etc. until it looks nice
- Alternatively: look up exactly what your FFT routines computes, figure out the "true" scale factor to get world-space coordinates

Tiling issues

- Resulting grid of waves can be tiled in x and z
- Handy, except people will notice if they can see more than a couple of tiles
- Simple trick: add a second grid with a nonrational multiple of the size
 - Golden mean (1+sqrt(5))/2=1.61803... works well
 - The sum is no longer periodic, but still can be evaluated anywhere in space and time easily enough

Choppy waves

- See Tessendorf for more explanation
- Nonlinearities cause real waves to have sharper peaks and flatter troughs than linear Fourier synthesis gives
- Can manipulate height field to give this effect
 - Distort grid with $(x,z) \rightarrow (x,z)+\lambda D(x,z,t)$

$$D(x,t) = \sum_{K} -\sqrt{-1} \frac{K}{|K|} \hat{h}(K,t) e^{\sqrt{-1}K \cdot x}$$

cs533d-winter-2005 31

- The distorted grid can actually tangle up (Jacobian has negative determinant - not 1-1 anymore)
 - Can detect this, do stuff (add particles for foam, spray?)
- Can't easily use superposition of two grids to defeat periodicity... (but with a big enough grid and camera position chosen well, not an issue)

cs533d-winter-2005 32